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PREFACE

The present book represents a part of a general trea-
tise "Structural Mechanics of Ships," written for the Leningrad
Institute of Ship Construction. Accordingly, the contents of

the book and the character of presentation of the material,
are correlated to the program and the development of this
general course. Only those problems are considered in the book
which are directly connected with the strength analysis of hulls
of submarines, assuming that the reader is familiar with the
fundamentals of general structural mechanics, which are used
in the book or which are referred to.

The book is subdivided into two parts: in the first, the
general foundation and the practical methods of strength analysis
of submarine hulls of various design are discussed; in the sec-
ond, the theoretical investigation of those problems is pre-
sented whose solutions are used in the first part of the book

and which were not contained in other sections of the general
treatise, or were not sufficiently developed in those sections.

In writing the first part, which is essentially of
applied character, the author made use of the material presented
by him in the third volume of the "Handbook of Ship Construc-
tion." Several of the author's published theoretical papers
devoted to questions of structural mechanics of submarines
were included in the second part of the book.
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INTRODUCTION

The hull of a submarine, from the point of view of structural me-

chanics, represents a hollow, riveted or welded beam of variable cross sec-

tion which, in contrast to the hull of surface vessels, must possess not

only a sufficient general longitudinal strength to equilibrate the weight

forces and the water pressure distributed along its length, but also a

sufficient general transverse strength to respond to large compressional

effects caused by hydrostatic water pressure at the limiting depth of sub-

mergence of the submarine.

The construction of the hull of submarines and the performance

characteristics of its various connections are so different from those of
hulls of surface vessels that its strength analysis requires the applica-

tion of quite different procedures and methods as compared with those which

are already firmly established in structural mechanics of surface vessels.

The procedures and methods peculiar to the strength analysis of submarines,

besides their purely theoretical foundation, require in addition an exper-

imental verification in order to establish the degree of reliability of the

theoretical formulas and in order to introduce appropriate practical coef-

ficients, as well as the specification of standards for design loads and
allowable stresses.

Another outstanding peculiarity of strength analysis of submarine

hulls is the fact that errors committed during construction may cause a

sudden wreckage of the submarine at great depths of submergence, which pre-

cludes the possibility of not only preventive but also post facto detection

of defects in submarine construction. This circumstance makes the perfor-

mance characteristics of submarine hulls essentially different from those of

surface vessels and other engineering structures.

In the world history of submarines, repeated wreckages have oc-

curred from unknown causes, which are most probably explained by assuming

the destruction of the hull at great depth due either to insufficient

strength or accidental submergence beyond the limiting depth used in design.

The element of suddenness, pointed out above, in the destruction

of the hull of submarines at great depths of submergence gives a particu-

larly serious character of responsibility in ensuring its strength and there-

fore it is required to submit the completed hull to a hydrostatic test not
only for checking the watertightness, but also to control the absence of

some production defects or omissions during analysis.

If the hydraulic testing of the hull is performed in drydock by

internal water pressure, then the forces and moments induced have the oppo-

site sign as compared with those which will be present in normal operating

conditions of the submarine and which entered into the analysis. This cir-

cumstance may require a supplementary reinforcement of some hull elements,

or the mounting of special reinforcements for the time of hull testing by



internal water pressure.

The special importance and the peculiar character of strength a-
nalysis of submarines require the necessity for the establishment of a spe-

cial course, devoted to their structural mechanics and containing both prac-
tical methods and procedures used in strength analysis of various elements

of submarine hulls, as well as their theoretical and experimental Justifica-

tion.
In the present course only those problems of strength analysis of

submarine hulls are considered which are absent in structural mechanics of

surface vessels.

The practical methods and procedures of structural analysis of sub-
marines are presented in the first part of the present course, and the der-

ivation of the formulas in the second part. This subdivision was used with

the aim to avoid an overloading of the first, main part with mathematical

derivations at a loss of readability of the book.



PART I

PRACTICAL METHODS AND PROCEDURES OF STRENGTH ANALYSIS
OF SUBMARINE HULLS

CHAPTER 1

,RULES AND STANDARDS FOR THE STRENGTH ANALYSIS
OF SUBMARINE HULLS

1. GENERAL FUNDAMENTALS FOR THE ESTABLISHMENT
OF STRENGTH ANALYSIS .OF SUBMARINE HULLS

1. The strength analysis of submarine hulls, of various designs as
in the case of surface vessels, is conditional because of the necessity of
making various assumptions or approximations, as, for example, in the de-
termination of the magnitude of the load and in the development of the
formulas which serve to determine the stresses which arise in the hull and
to establish the instant at which the hull loses stability.

This inevitable inexactness of the conditional calculations is
safeguarded by the introduction of factors of safety in accordance with
previous experience with similar designs and with the results of full-

scale or model experiments.

The factors of safety are introduced either into the design load-
ing or into the allowable stresses. In the first case, the loading is

considered as that which causes failure stresses: i.e., stresses for which
there exists an impermissible deformation or which cause failure of the
whole structure because of loss of stability. In the second case, the

loading is considered as that for which the maximum stresses in the cross
section must not exceed the standards established for allowable stress.

The suitability of one or the other method of conditional cal-

culation depends on the conditions of each particular case. This problem,
and also the general fundamentals which serve to establish the magnitude

of the safety factors and the magnitude of the failure stresses, are

considered in detail in the general course in Structural Mechanics of Ships;

therefore, there is no necessity to establish them here.'

2. The above-mentioned general fundamentals, as applied to the
strength calculations of surface vessels, servLog to establish the factors
of safety and the values of the failure stresses as a function of the na-
ture of the loading and of the nature of the stresses which are produced,
are set forth and sumarized in the official publication "Requirements for

IReferences for Chapters I and 2 are listed on page 2-30.
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Carrying Out Strength Calculations for Surface Vessel Hull Designs." This
publication should also serve as a general guide for strength calculations

for those structures of submarines whose purpose and mode of action is not
unique to submarines. The requirements and standards for conditional

strength calculations of submarine hulls, where they differ from the hull
design of surface vessels, must be established in conformity with the spe-
cific aim and mode of action of the submarine designs. Such parts of the

submarine as the so-called pressure hull are intended to receive and with-

stand the hydrostatic pressure of water at the limiting depth of submergence.

3. The requirements and standards relative to the strength calcula-

tion of specific structures of submarines must be established as a result
of examination and analysis of the three basic problems of the structural

mechanics of ships:
2

The problem of the external forces - the determination of the mag-
nitude and character of the externally acting forces.

The problem of the internal forces - the determination of the
greatest forces and stresses in the cross sections of the structure aris-

ing from the assumed design loading.

The problem of the allowable stresses - the establishment, for the
structure, of standards for the failure stresses as a function of the char-

acter of the stresses, and the establishment of the proper safety factor,
considering the degree of conditionality as arbitrarily of the whole calcu-
lation and previous practical experience in the application of strength cal-

culations to submarine structures.

The establishment of the ultimate strength of various designs of
the pressure hull is the most difficult problem, the great importance of

which stems from the peculiarly unfavorable conditions and consequences

which accompany any impairment of strength in the submerged condition. The
difficulty in solving this problem consists in the scant reliability of the

applicable theoretical formulas determining the ultimate strength of the de-
sign and the necessity for introducing into these formulas correction coeffi-
cients which can only be determined from the results of full-scale or model

tests of the structure.

4. There are developed, below, the general fundamentals for the estab-
lishment of the magnitude of the design load, i.e., the design depth of sub-

mergence for the entire pressure hull of the submarine, proceeding from the

given limiting depth of submergence.

These fundamentals are used again in the following chapters in de-

termining the standards and methods of analysis of various hull connections.

2. CHARACTER AND MAGNITUDE OF THE EXTEIAL LOAD ACTING ON THE NULL

A peculiarity of the design of the pressure hull of a submarine is
that the strength of these designs is determined in large measure by their

1- 2



stability and that the stresses increase more rapidly than the external load

which causes them. This circumstance, as is known, must be taken into con-

sideration by the introduction into the calculation of an assumed factor of

safety for the magnitude of the loading and not for the magnitude of the

allowable stress. The magnitude of the design load obtained by this method
(i.e. the magnitude of the design depth of submergence) must be considered
as the load at which the structure is in an unsafe condition, that is, in

a condition near its ultimate strength, where the stresses approach the

standards established for the failure stresses.

1. The load acting on the hull due to hydrostatic pressure (the in-

tensity of loading is referred to the unit of length of the hull) can be re-

solved into the following two components (Figure 1):

(1) The load P, uniformly distributed, of intensity equal to

p - h tons per meter [1)

where p In the intensity of loading in tons per running meter along the cir-

cumference of the hull (for a portion of the length of the hull equal to 1
meter) and h is the depth of submergence of the axis of the hull in meters.

(2) The load P 1 , distributed triangularly, of intensity

p, = rcosa tons per meter [2]

where r is the radius of the pressure hull in meters and a is an angle de-
termining the position of points on the surface of the pressure hull.

The total component of the load p, (in the vertical direction,

Figure 2)
20

P -fI p , r con ad a = r,2 tons [3

0

i.e., equal to the displacement of a portion of the pressure hull 1 meter

in length.

The load P, uniformly distributed, is completely balanced on the

hull and, in the case of a circular hull, causes no bending forces.
The load P1 , distributed triangularly, must be balanced in a ver-

tical direction by the forces of the weight of the submarine; forces of

veight, balancing the pressure PL, are set up for each portion of the length

of the hull, partly in the form of forces of the weights P2 , existing in

this portion, and partly in the form of the difference between the shearing

forces P3 acting at the boundary sections of the portion (Figure 3).
The aforesaid forces, i.e., the water pressure P1 , the veight

forces P2 , and the shearing forces P3 = P1 - P2 , cause bending in the trans-

verse cross section of the hull.

1-3



The distribution of the force P2 , related to the weights which are

found directly in the section, depends on the weights and their location

and can be established without difficulty for each particular case.

The law for the distribution of the force P3 = P1 - P2 may be tak-

en according to the known rule for the distribution of tangential forces in

the transverse cross section of a beam of ring-like cross section under the

action of shearing forces (Figure 4)

p'xS P3xI2frd ~xtxrcos4O. 3 sina tons per meter 4
P3 =  2 = 2, r 3  t Wr

where P3 is the shearing force acting on the cross section

S is the static moment of the portion of the cross section lying on

one side of a horizontal plane through the neutral axis

I -or 3 t, the moment of inertia of the entire section relative to the

neutral axis, and

t is the thickness of the plating of the pressure hull.

The direction of the stresses p3 , lying along the tangents to the

boundary of the cross section as shown in Figure 4, is determined by tha

direction of the force P3 ; consequently at different sections of the hull

it will be different.

2. From the above considerations it follows that transverse sections

of the hull of a submarine must be investigated for the action of the fol-

lowing loads:

(1) a uniformly distributed compressive loading

p = A tons per meter

(2) a triangularly distributed loading

p, = ?cos a tons per meter

(3) a loading P2 , due to a part of the weight of the submarine,

existing In the portion of its length which is under consideration;

(4) a loading P3 - wr 2 - P2 , distributed according to the law

P3
p3 - -sin a tons per meter

The first of the above loadings, in the case of a true circular

section, produces only uniform compression in the sections of the hull,

causing compressive stresses equal (per meter of length of the hull) to

px2

2 1ptons
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To investigate the effect of the three other loadings, we consider

the following two limiting cases:

(1) The loading P2 , due to the hull weight for the section of the

length under consideration is absent, i.e., P2 a 0;

(2) The loading P2 is equal to the displacement of the section,

i.e., P 2 = wr2 , and is applied as a concentrated force at the lower part of

the cross section; in this case P3 = fr 2 - P2 = 0, and consequently the load-

ing p 3 = 0.

It may be shown that, for a circular hull (Part 2, Chapter III),

in the first case the action of the remaining three loadings does not cause

bending moments in the cross section and only increases the compressive

forces by the quantity

S = r2 tons

In the second case (2) these loadings cause a maximum bending mo-

ment, equal to (in the lower section)

0 _ 0.75 03 tons per meter [6]

and a compressive force, equal to

S 2 - 0.25 r2 tons [7]

Hence, the effect of non-uniform hydrostatic pressure on the trans-

verse strength of a submarine hull and the nature of the distribution of the

loadings (of the forces of weight) can become manifest in the increase of

the axial (compressive) forces in the cross sections of the circular hull by

an amount of the order of r 2 tons, and in the appearance of bending moments

in these cross sections of the order of r' ton-meters.

From a comparison of the compressive forces r2 with the axial

force arising from the action of the loading p, equal to hr, it is evident

that their ratio is equal to r2:hr a r:h, i.e., equal to the ratio of the

radius of the hull to the depth of submergence.

Since the order of magnitude of this ratio for contemporary sub-

marines is extremely small, not greater than 0.05, it then becomes possible,

while not losing the practical accuracy of calculations for determining the

axial forces in the circular cross section, to proceed with the design depth

of submergence h taken to the centers of these cross sections.

The effect of the bending moments from the loading pL and from the

forces of weight on the transverse strength of the hull can be substantial;

this must be considered in calculating the strength of frames. It is

possible to neglect this effect only in the case of the existence of suffi-

ciently rigid longitudinal connections in the form of keels, foundations,
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the plating and longitudinal location of the side and deck tanks and other

structures which bind the frames to each other and to the stiff transverse

bulkheads.

3. The external load which acts upon the pressure hull is the hydro-

static water pressure, the intensity of which varies with the depth of sub-

mergence, reaching its maximum value at the so-called limiting depth. The

limiting depth is understood to be that maximum depth (to the axis of the

hull) to which the submarine can repeatedly submerge (for example, lying

upon the bottom), without any vestige of permanent deflection of its hull.

Repeated submergence to the limiting depth can take place only a limited

number of times, about 300 for the entire service life of the submarine, and

then with a sufficiently large interval of time between each submergence.

In this connection, one must consider the load, corresponding to the given

limiting depth, In the nature of its variation, as constant; but in the

nature of its action, as accidental.

Considering that at the limiting depth, the submarine may have
trim, then one must take the load which acts at various transverse sections as
variable, determining it according to the expression

A - AP + 0 , (8]

where hnp is the stated limiting depth of submergence,

0 is the stated possible angle of trim, and

x is the distance of the cross section from amidships.

3. DETERMINATION OF THE DESIGN LOADING FOR THE PRESSURE HULL

As was shown in Section 1, the factor of safety which is used in
the design of the pressure hull must be introduced into the load, in view of

the absence of strict proportionality between the value of the external load

and the stresses which it causes.

In order to completely ensure the transverse strength of the sub-

marine hull, it is necessary, for proceeding from the acting load determined

by Expression [8) to the design load, to take into account all circumstances

which affect the magnitude of the safety factor. Analyzing these circum-

stances and considering certain of them in the following assignment of stand-

ards for the failure stresses, we may arrive at the conclusion that, for
.the transition from the acting load to the design load, one should:

a. increase somewhat the value of the stated limiting depth of

submergence hnp, providing thereby for the possibility of an arbitrary over-

submergence of a damaging character: this damaging over-submergence is to
be taken as a certain fraction of the length of the submarine (about 20%).

b. to carry out the strength calculation according to formulas

which determine the moment of its collapse (after loss of stability), in-

troduce into the calculation a certain coefficient k, which takes Into
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account the fact that even before the inception of collapse of plating and

frame, permanent deflections may appear, due, principally, to the not per-
fectly circular shape of the structure. The magnitude of this coefficient,
however, can only be obtained on the basis of results of accurate experiments

on the collapse of structures or their models.

A theoretical investigation of this problem leads us to conclude
that the deviations from true circular shape in frames and plating have an
extremely important effect upon the maximum compressive stresses which a-
rise in them (see Chapter V of Part 2). Therefore the value of the coeffi-
cient must be selected as a function of the expected degree of accuracy of
the assembling of the hull, and during the construction of submarines
serious attention must be given to the control of the accuracy of its fabri-
cation. Deviations from true circular shape in frames greater than 0.25 per-

cent of the radius, and sag of the plating between frames greater than 15
percent of the plating thickness, cannot be permitted (Section 24).

On the basis of the above, the design loading, i.e., the design

depth of submergence, must be determined in accordance with the following
expression

lA5, - k[Ah , +0.2 L + ],
19)

where k is a numerical coefficient, greater than unity, which must

be established experimentally

L is the length of the submarine, and
hap, 0, x are quantities defined in Expression [8].
Assume, for example, that it is known that for a load equal to 70

percent of the collapse load hp, which corresponds to the total loss of sta-

bility of the plating, there already begins to be evident local permanent
sag in parts of the plating. The above-established basic condition of ade-
quate strength of the plating, in this case, will consequently be

0.7 A - (AMP + 0.2 L + Vx].

.Dividing both sides of this equation by 0.7, we obtain the value

of the coefficient k in Expression [91 as equal to

k .1.43 - 1.4.

0.7

In this case, Expression [9], for the design depth, becomes

hP = 1.4 [A.,, + 0.2 L + 0z). [10]
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According to Expression [l0], the factor of safety, i.e., the ra-
tio of the design depth to the limiting depth, at the midship section (x -

0), is obtained as

--p 1 .4 [i+ L][ii]p [+0.2L]

)imhjp hnp .

As can be seen, the factor of safety increases somewhat with an
increase in the submarine's length and decreases somewhat with an increase
in its limiting depth, which is quite proper.

In Figure 5 are shown graphically the relationships, derived above,
between the limiting and the design depths of submergence for submarines 50
and 100 meters long, for a limiting depth of 100 meters; and for a subma-
rine 100 meters long at a limiting depth of 150 meters. By dashed lines is
shown the position of the submarine for the operating depth, taken as 2/3 of
the limiting depth. By horizontal lines placed below the limiting depth,
and down to the design depth, at which the hull can be crushed by water
pressure, are shown the zones of forbidden depths of submergence for the

submarine.

h
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CHAPTER 2

STRENGTH ANALYSIS OF HULL PLATING

4. TEE GENERAL CHARACTER OF THE DEFORMATION OF THE PLATING

1. We shall consider that the shell of the pressure hull of a subma-

rine is cylindrical, and that the longitudinal curvature of the hull is neg-
ligible.

The cylindrical form of the shell can be either a true circle or
any smooth curve approximating a circle. In the latter case, the radius of
curvature of the shell, in the area under consideration can be taken as the
radius of the circle which approximates the cylindrical surface in the
area. In this way, in every case the calculation of the plating strength
becomes a calculation of the strength of a thin cylindrical curved shell
supported by transverse stiffeners (frames) and acted upon by water pressure
distributed over its outer or inner surface. Besides the transverse load
along the perimeter of the shell, longitudinal forces act as a consequence
of the water pressure in the longitudinal direction.

The strength and nature of the deformation at collapse will vary
depending upon whether or not the shell is acted upon by internal or exter-
nal pressure. In the case of external pressure, collapse arises from loss
of stability of the shell. This effect can occur at significantly lower
water pressures than if the pressure acted on the inside. The essential
difference between the external and internal pressures lies in the fact that
for external pressure the strength of the shell is rendered more suscepti-

ble to the unavoidable (in practice) general and local deviations from a
truly circular curve. A comlete analogy exists, in this regard, with the
deflection of a bar, having initial curvature, in tension and ompression.

The resistance of the shell to internal pressure can be estimated
with sufficient accuracy and certainty by using only theoretical formulas
which give the value of the stress as a function of the dimensions and the
pressure (Section 2, Part I of this book). For estimating the resistance
of the shell to external pressure and for defining accurately the effect of
the design dimensions, one must use, in addition, the results of full-scale
and model experiments on shells, which must supplement and modify the corre-

sponding theoretical formulas.
2. On the basis of the results of theoretical and experimental in-

vestigations of the resistance of shells to the action of external pressure
of water, 'it is possible to draw the following picture of its deflection up
to the moment of collapse.

Under the action of water pressure on all sides the shell under-
goes first a deformation in compression which is symetrical with respect to
the axis; and a deformation in bending, in the span between frames. Under
further pressure increase, the shell loses stability, with the formation on
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it of observable humps and hollows; naturally at first these have a local

character, and local humps and hollovs can appear at a pressure considerably

lower than the Euler (critical) pressure corresponding to the general loss

of stability of the shell. The appearance of such premature local humps and

hollows is explained by the presence in these places of minute structural

deviations of the shell from true circular shape. The extent of these pre-

mature humps and hollows is limited by the frames; and therefore, for a suf-

ficient reserve of local strength in the frames, even for a further increase

in pressure, the humps and hollows preserve their local character. However,
with the approach of the pressure towards the critical, the number of such

local hollows and humps, and also 'their depth, increases, and they assume
the character of undesirable permanent deformations in the shell.

The magnitude of the critical pressure is determined by the moment

of rapid increase in the number of the local hollows and humps with their

consequent transformation into a continuous wavy surface. Under conditions

of insufficient local strength of the frames, a premature failure of the shell

as a whole can occur as a result of the extension of any one of the local

dimples beyond the limit of the interval between frames, with the formation

of a dimple in that frame.

After the loss of stability of the shell, that is after general
disappearance of ito perfectly cylindrical shape, it is markedly deformed

by even a small increase in pressure, accompanied by a sharp increase in the

breadth and depth of the dimples between frames. From this moment, the shell

in the vicinity of the dimple begins to act as an elastic plate, shirking

the water pressure off onto the frames; therefore the possibility of further

increasing the pressure is determined by the local strength of the frames.

From a practical point of view, we may consider that the strength of the
shell, already has begun to drop at this stage of the deformation; there-

fore, as the limiting strength of the shell, we should take that pressure

corresponding to the inception of its general loss of stability.

During experimental investigations of the resistance of the shell

to internal water pressure, this instant of its deformation is easily

noted not only by visual observation of the condition of the hull, but also

by the usual accompanying noise, and in addition by the sharp loss of water
pressure on the manometer.

3. Full-scale and model tests have shown that the water pressure cor-

responding to the instant of stability loss, in actuality, is considerably

smaller than that calculated by the theoretical formulas (Chapter 2 of Part

II.)
This circumstance can be taken into account by the introduction

of safety factors into the theoretical stability formulas, under conditions
where the accuracy of construction of the shell is guaranteed by the estab-

lishment of production tolerances and where the stresses in the shell, at
the critical pressure, are sufficiently removed from the elastic limit of
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the material.

From the foregoing, it is evidently necessary to calculate the

strength of the shell for stresses and for stability. Below is given a

practical method for carrying out both of these calculations.

5. ANALYSIS OF STRESSES IN PLATING

1. The principal object of the stress analysis of the shell is to as-

sure that the stresses arising in the cross sections of the shell at the

critical pressure are not so great that the appropriate design formulas

which determine the value of the critical load do not truly apply.

In this connection, practical standards must be established which

cannot be exceeded.

The determination of the stresses in the shell at the critical

load is conditional because at this load great stresses caused by the ini-

tial, essentially unavoidable out-of-roundness, arise which are not taken

into account in the stress calculation. Having this in mind, it follows

that the practical standards for stresses should be in conformity with the

results of full-scale and model tests of shell stability. Analysis of the

results of such tests leads us to the corkclusion that we should standardize

on the basis of the greatest stresses in the longitudinal cross sections of

the middle surface cfthe shell. As a practical norm for these stresses,

one should take a value not exceeding 80 percent of the elastic limit of
the material. The greatest stresses in transverse sections of the shell at

its supporting contour, which are local in character, can approach the elas-

tic limit and even somewhat exceed it under the condition that the above-

mentioned stresses do not exceed this limit.

2. If the shell were not stiffened by frames and bulkheads, then the

stresses in its transverse and longitudinal cross sections, at the mean

surface, would be determined by the following expressions (Figure 6):

in the transverse sections

91 (1] 2

in the longitudinal sections

where q is the intensity of the external distributed pressure,

r is the radius of the shell, and

t is the thickness of the shell plating.

On account of the existence of transverse supporting members,

apart from deflection due to compression, the shell will be subjected, in

addition, to deflection of transverse and longitudinal bending in the in-
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tervals between these members.* As regards the stresses in the longitudinal

cross sections of the shell, in the vicinity of its stiffened sections they

must evidently be smaller, as a consequence of the decrease of bending in

that region. In the center of the span, however, these stresses can decrease

or somewhat increase, in accordance with the spacing between transverse mem-

bers. An increase of these stresses can arise on account of the unfavorable

effect of the longitudinal forces upon the bending of the shell.

For the frame spacing generally accepted in practice, the maximum

stress in the longitudinal cross sections of the shell becomes somewhat larg-

er than that determined by Expression [2]; it does not, however, exceed the

latter by more than 5 or 10 percent.

Although only the stresses in a longitudinal cross section have

Immediate practical significance in calculating the strength of the shell

(which stresses can be obtained, with sufficient accuracy, by the elementary

formula [21 after the introduction of a corrective coefficient of 1.05-1.10),

nevertheless it is advisable to develop,. as well, a more complete investi-
gation of the deformation of the shell. In particular, the magnitude of the

reactions acting between the shell and the frames, obtained in such an in-

vestigation, may have much practical interest. There is set forth below a

complete investigation of the deformation of the shell which can be used, in

addition, for estimating the effect of the degree of rigidity of the frames

upon the stability of the shell.

3. The investigation of the deformation of a cylindrical shell, sup-

ported by uniformly spaced stiffeners (frames) and acted upon by a uniform

external pressure, can be transformed into an investigation of an elementa-

ry strip of width equal to unity, cut from the shell by two meridional sec-

tions and acted upon by the following loads (Figure 7):

a. A load q uniformly distributed along its length.

b. A load, acting in the opposite direction, equal to T1/r, repre-

senting the projection of the forces T1 , which are transmitted to the strip

by the adjoining parts of the shell. These forces arise as a consequence

of the compression of the shell (Eft) and as a consequence of the forces T

in a perpendicular direction (pT).

The forces T, are equal to

T, x 7' +s E tt

and, consequently, the loading, acting on the elementary strip on the side

opposite to the action of the loading q, will be

+-"w,

*For the effect of the degree of stirfness of these members on the magnitude

of the stresses in the shell, see Section 5 of Part II.
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c. A compressive force in a longitudinal direction, equal to

UPt 2

The effect of this force upon the bending of the strip, as is

known, can be replaced by the action of a transverse distributed loading, of

intensity Tw', where by w is understood to be the equation of the elastic

curve of the strip under consideration.

The differential equation of the bending of the strip is of the

form E, wIv. q 31-. (,]
t3

where I = , is the moment of inertia of the cross section of the
strip. 1( _)

The solution of this equation must satisfy the following boundary

conditions (Figure 6):

a. The slope at the supports must be equal to zero, i.e., for xm

0 and * -1, w'=O;

b. The displacement of the supports of the strip in the direction

of the radius of the shell must be equal to

0EF '

where R is the reaction of the supports of the strip, i.e., the intensity of

the forces producing compression in the stiffener (frame); and

F is the cross-sectional area of the stiffener (frame).

The above equation is the differential equation of the bending of

a beam lying on an elastic foundation which has a coefficient of stiffness

Et/r2 , and is acted upon by a transverse loading q(l-p/2) and a longitudinal

loading qr/2.

The solution of this equation can be obtained either in closed

form3 or in the form of a trigonometric series. 4 Formulas for calculating

the basic factors in the bending of the shell are given below. They are

based upon a solution of Equation [3), obtained by trigonometric series; this

solution is given in Section 2, Part II of this book.

4. Symbols (in units of kilograms and centimeters):

r radius of the surface of the shell,

t thickness of the shell,

E Young's modulus (E - 2x106 ),

x Poisson's ratio (m - 0.3),

L distance between frames,
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F cross-sectional area of the frame,

q the loading (q - 0.lh, where h equals the depth of submer-

gence, in meters).
it

/ =0.85-;

rF
k = - Assumed

r F+lt Notation
y k

x 1+2kN

The other quantities which enter into the formulas., designated by

N, M, P, and Q, must be determined from Tables 2, 3, 4, and 5, as a function

of the values of the quantities a and c, which are calculated from the ex-

pressions

a-w3,46 ; c-0.062 _V--

5. Formulas

The deflection of the shell at the frames (the deflection of the frames)

ED [4]

The maximum deflection of the shell

The reaction of the shell on the frames

Rt - EF
[6]

The stresses at the supporting contour:

a. in the transverse cross sections of the shell

- + 37 X),2 Pq[ I7)

b. in the longitudinal cross sections of the shell

a2 ._. E + 0.3 18), [81

The stresses at mid-span:
a. in the transverse cross sections

q +3 7 Y) ,2 Qq; +
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b. in the longitudinal cross sections

o--E --- + 0.3 o,110]

c. in the mean surface

% -EL- 0.3 1q

In Expressions [71 and [91, the upper sign refers to the outer,

and the lower, to the inner surface of the shell. For tensile stresses the

sign is taken as plus; for compressive stresses, minus.

The design of the shell according to the above formulas is easily

carried out using the tabular system of computation, as given in Table 1,

applied to the following example.

Example. Find the stresses and the deflection in the shell of a sub-

marine having the following characteristics:

Diameter of the pressure hull, 2r 400 centimeters

Thickness of the shell, t 13 millimeters

Frame spacing, 1 700 millimeters
Design depth of submergence, h 150 meters

Frame, channel bar No. 16 (F = 24.9 centimeters
2)

We calculate and enter in Table 1 the following quantities

r = 200 cm; t - 1.3 cm; I = 70 cm; F = 24.9cm2 ; It = 70 x 1.3 =91.0 cm2 ;

F + It = 24.9 + 91.0 = 115.9 cm2;

5 = U = 6.5 x 10-3; V = 0.805;
2 200

/= 0 .85 0 =85 11-9- 3.1;
IF 24.9

Y= = 2.86;

, 86 8.15;

k- F 4-9 =0.215;
F + It 115.9

q = 0.1 x 150 = 15 atms;

/ 6.5 x 10-3 x 2.86 9.31;

a= 3.46 .-3.46 0.795;
1 70

c-0.062 : '100 8 - 0.062 x 9.31 , 0.7150.805

'Editor's Note: the abbrevistion for 'atm" (atmospheres) is written, in Russian script, as am.
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From the derived values of the quantities a and c we find, using

Tables 2, 3, 4, and 5, the values of N, M, P, and Q:

N -1.025; M - 0.863; P - 2.44; Q - -0.40

We develop the computation of the deflections and the stresses in

the shell according to Formulas [4] through [11), using the corresponding

lines in Table 1.

Line 1. 2kN - 2 x 0.215 x 1.025 -0.440

Line 2. x k - 0.215 -0.149
1+2kN 1+0.440

Line 3. 37 Xy2 q = 87 x 8.15 x 15 x 0.149 - 6T4

Line 4. 3T Xy qP = 674 x 2.44=1640 T o nd b o

2 (The second member of

Un e 5. 37 Xy qQ f- -674×x0.40 - -270 oml(formula 9

q 15 (The first member of the
2 x .5 x 10- 3 (formulae 7 and 9

ine 7" 3.4 M =3.4 x 0.863 = 2.93

Line 8 f+ 3.4 M = 3.1 + 2.93 = 6.08

rq] 200 x15
Line 9. y - = 0.149 = 0.0344

E& 2x 106 x6.5x10 3

Line 10. The deflection of the frame according to Formula [41
o =y f" 0.0844 x 8.10 - 0.107 Cm

Line 11. The maximum deflection of the shell by Formula [5]
rq

x L (f + 8.4 A) - 0.0344 x 6.03=O 0. 2 08 CM

Line 12. The reaction of the shell on the frame by Formula [61

R - E 9 !-?- 2 x 106 x .9 x 0.107 - 134 kg/cm
P,2 2002

Line 13. The stress in the cross section of the frame

a - -E-. -2 x 106 2l2 - - 1070 stn
r 200
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Line 14. The stress at the inner surface of the shell in a transverse cross
section at the frame, by Formula [7]

2- . 37 Xy2 qP 1155 - 1640=- 2795 atm

Line 15. The same at the outer (loaded) surface of the shell, by Formula (7)

= -1155 + 1640 = +485 atm

Line 16. The stress at the inner surface of the shell in a longitudinal
cross section, at the frame, by Formula [8)

02 - -E + 0.3 a1 -1-070 - 0.3 x 2795 - - 1905 atm

Line 17. The same at the outer surface of the shell, by Formula [8]

02 - -1070 + 0.3 x485 -- 925 atm

Line 18. The stress at the inner surface in a transverse cross section at
mid-span, by Formula [9]

250 37 yy, qQ =-1155 - (- 270) =-885 atm

Line 19. The same at the outer surface, by Formula [9)

- 1155+ (-270) - -1425 atm

Line 20. The stress at the inner surface of the shell in a longitudinal
Cross section at mid-span, by Formula [10)

02 -1 0.8.1O0 107*0.8 0.3 x 885 -- 2080 -265 2845 sWmp. *0.107

Line 21. The same at the outer surface, by Formula (10]

02 -- 2080 - 0.3 x 1425 -- 2505 atm

Line 22. The stress at the mean surface of the shell in a longitudinal
cross section at mid-span, by Formula (11]

E1--: 0, 0. 9.8 =- 7 -0.3 x 1155 -2425 atm

6. STABILITY ANALYSIS OF PLATING

1. The calculation of the shell of the submarine's hull for stability
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is essentially the problem of investigating the stability of a thin cylin-

drical shell, supported by stiffeners of finite rigidity (frames), acted

upon by an external uniformly distributed pressure, and in addition by lon-

gitudinal forces arising from the action of that pressure upon the trans-

verse partitions of the shell.

This problem is one of the most complex problems of structural

mechanics, not only because of the mathematical difficulties associated with

its accurate solution, but, mainly, because of the necessity for introducing

extremely important practical correction factors, into the results obtained

by theoretical means, for the purpose of bringing the solution into agree-

ment with the results of direct experiment. The principal reasons which

explain the large deviation between theory and practice are the following

(see Section 33 of Part I):

a. Under conditions of the existence of the high stresses which

arise in the shell at the moment of its loss of stability, the deformation

curve of the material is considerably different from the curve which is used

in the derivation of the theoretical formulas.

b. In view of the existence of essentially unavoidable initial

deflection in the shell, which is a consequence of a deviation from true

circular shape, under conditions of compression, there arise large additional

stresses not taken into account by the theoretical formulas.
5

For these reasons, no theoretical formula can be recommended, as

long as it is not in agreement with the results of direct experience and is

not adjusted to be so; on the other hand, any of the known theoretical for-

mulas, under that condition, become almost equally reliable within the limits

for which they have been adjusted.

2. One of the first papers dealing with the question of the stability

of cylindrical shells supported by stiffeners, was that of Lorenz.6 His

formula was simplified by I. G. Bubnov, and, for the case of a large number

of waves around the circumference of the shell, was presented in the follow-

ing form.
7

M2.- Pj)Xf [12]

1 -

with

U - r t

where qis the critical value of the uniformly distributed external pressure;

t is the thickness of the shell;

r is the radius of the shell;
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* is the number of waves around the circumference, at the time of loss

of stability;
u is an argument;
1 is the spacing between frames;

K,k is the numerical coefficients, which are a function of u and are do-

termined from Table 6.

Subsequently, the theoretical formula of Southuell appeared in
191.8 2 -1 2

t, ,.(,. 14 r2 (1 _ ..)7j [13]

In 1914 von Mises published his formula, which he derived for cal-

culating the stability of fire tubes, i.e., without considering longitudinal

compression.9

Much later von MJses published a second formula taking into ac-

count longitudinal compression.10 This second formula may be put into the

following form:

1.-~X [A{) + *2 g
12 (1 - M2i) P2 L 2Jj2a'~ (4

In Formulas [13] and [14] the integer n signifies the number of
waves which appear around the circumference of the shell at the instant of

loss of stability; this number n must be taken as that for which the quantity

to in the formulas has a minimum value (n > 2)

The critical pressure go, as determined by von Mses' second for-

mula (Equation 14), and also the corresponding number of waves n, can be

found by the use of the curves and formulas given in Figure 8.

Since in practice, the number n is generally fairly large (of the

order of 15), there exists the possibility of excluding it from formulas

(13] and (14] by means of investigating an analytical mini for as a

function of the variable n. This improvement on these formulas, carried

out by P. F. Papkovich,1 1 transforms them into the following:

a. Southell's formula

(ioo 3))/2
- SAX 18.8 X 105 0"

b. von Mase' second formula

1=.1 X [161
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where r is the radius of the circumference of the shell

t is the thickness of the shell

I is the spacing between frames.

It should be noted that in developing all the theoretical formulas

for stability, due to the mathematical complexity of obtaining an exact so-

lution of the problem, various important assumptions are made. Thus, in

particular, Southwell's solution was obtained on the assumption of the ab-

sence of a loading acting longitudinally on the shell; in his solution, as

in all known solutions, the stiffeners are assumed to be acting only so as

to prevent a change in the shape of the shell, and the shell itself is as-

sumed to be completely inextensible.

There is given below the solution of this problem derived without

the introduction of the foregoing assumptions. This solution may be obtained

in a simple and more lucid manner, by applying the method of potential ener-

gy 2 (see Chapter 2 of Part II of this book).

Symbols: E

r is the radius of the cylindrical shell E -

t" is the thickness of the shell i-i 2

1 is the spacing between framesA d

Y__ lNotation

f- ryi

n is the number of waves along the circumference at the time of loss of

stability.

X is a coefficient which characterizes the effect of the degree of stiff-

ness of the frames upon the stability (see the foregoing Section 5).

When subjected to a uniform all-sided external pressure q, the
shell loses stability at a pressure determined by the expression:

28x x. E 1  (n2 + 2)2]

2(1_0.85 )n+ a,2  12 [17]

The integer n in this expression must be taken as that for which
ca has the least value.

For the usual assumption that the stiffeners do not prevent shrink-

age [conression] of the shell, the coefficient X must be taken as zero.

Using Table 7, the value of the integer n as a function of * and
y may be found. This is to be substituted in Formula [171.

In Table 8 are given the values of the critical pressure q. ac-

cording to Equation [171 as a function of the values of 6 and Y (for X =0).
From the data of this Table, the corresponding curves shown in Figure 9 were

constructed.
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3. Bearing in mind the necessity, noted above, for introducing into the

theoretical formulas for stability correction factors as indicated in Section

1, we must take the following practical method of calculating the stability
of the submarine's shell:

a. Calculate, according to the three Formulas [15], [16], and
[171, the critical pressurefq.

b. Find from Table 9 the values of the correction factors ,

as a function of the design thickness of the shell tL in millimeters, which

take account of the effect of initial deflection.

c. Calculate the average compressive stress in the longitudinal

cross sections of the shell, corresponding to a pressure ! q,, by the ap-
proximate formula

* 9 m11~q~*L ;[18]

d. Find from Table 10 the vAlue of the correction factor V,
which takes into consideration the effect of the stresses upon the stability.

e. Calculate the actual critical pressure for the shell q,, from

the formula

f. Calculate the average compressive stress in the longitudinal
cross section, corresponding to a pressure ep by the formula

at* =12 X 09[20]

This stress is to be compared with the established norm for per-
missible stress, which is equal to 0.8&,.

The above stability analysis should be carried out in the tabular

form shown in Table 11. In carrying out the computations, the following
should be taken into consideration:

a. Since the actual shell thickness my differ from the specified
thickness, and having in mind the great effect of thickness upon stability,
it is recommended that a thickness t be used, which is less than the nominal
thickness t1 ; the value of t should be selected from considerations of the
technical conditions under which the thickness of steel is measured. In
general, take the thickness t as 0.96 ti.

b. The critical pressure should be taken as the least of the

values obtained from the three Formala [1], [16] and [17].
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Example. Find the critical pressure for the shell of a submarine

having the following characteristics:

Diameter of the pressure hull, 2r 4 meters

Nominal thickness of the shell, t1  1.3 cm.

Spacing between frames, 1 700 am.
Cross sectional area of the frame (channel bar Number 16) 24.9 cm. 2

Material:

High tensile steel:
E - 2 x 10 kg./cm,2 [metric atmospheres]

=0.3
3,000 kg./cm.

2

The computation is carried out using Table 11, in which are entered

the results of the computations for this example. The value of the quantity

is taken from the calculation of the stresses in the shell made in the

previous example (Section 5).
In the first lines of the table the values of the following quan-

tities are entered:

Nominal shell thickness, tj 1.3 cm

Radius of the shell, r 200 cm

Frame spacing, 1 70 cm

Design shell thickness, t = 0.96 tj 1.25 cm

Ratios: 7 200
y -- 2.86;

1 70

= = 6.25x10 - 3

We develop the computation of stability by Formula [17] in the

following order:

a. Determine the number of waves n, at which the shell collapses

due to loss of stability. The number n is found from Table 7; for the given

values of Y and#. (n a 16).

b. Calculate the quantity& 2  
Y2 2, which enters into Formula

[17]. a 2- 80.7
c. Calculate the value of the coefficient X, which takes into

account the effect of the degree of stiffness of the frames upon the shell's

stability (X = 0.149 from Table 1, line 2).

d. Determine the value of the correction factor q from Table 9;

for a thickness t - 12.5 mm., '% a 0.79.

e. Compute from Formula [17) the theoretical value of the criti-

cal pressure q.; in Table 11, E is taken as 2 x 106 kg./cm. 2 for Formula [17].

f. Determine the average stress v in the longitudinal cross sec-

tion of the shell at mid-span, corresponding to a pressure q,,, according to

the approximate Formula [18].

g. Find from Table 10 the value of the correction factor q,
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which takes into account the effect of the magnitude of the stress upon the

shell's stability (for . - 3340 kg./cm.2, ni - 0.77).

h. Compute the design value of the critical pressure from Equa-

tion [19].

q1, "-2'79

i. Compute the average stress in the longitudinal cross sections

of the shell, which corresponds to the critical design pressure, according

to Equation [201.

J. In the last part of Table 11, the computation, in a similar

way, of the critical pressure by Formulas [151 and [161 is given.
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7. APPROXIMATE DETERMINATIoK OF THE THICKNESS OF THE
SHELL PLATING AND OF THE SPACING BETWEEN FRAMES

1. The optimum design of the submarine's hull, from the standpoint of
weight, must approach that for which the average compressive stress in the
shell (in a longitudinal cross section at mid-span) at the moment of loss of
stability, is equal to the assumed standard for allowable stress in the ma-
terial,

0a 0.8 X aT

This average compressive stress can be obtained from the following
approximate formula, with sufficient accuracy for present purposes:

r (211o-1.1-,_['[1

After substituting in the left side of this expression the as-
sumed allowable stress, and solving for t, we have the following expression
for the shell thickness, for which the stress will not exceed the standardl

1.1 x q9'j r qg1 r
0.8 -1.4 - [221

2. Having computed from Equation [22] the shell thickness t, the frame

spacing I corresponding to this thickness may easily be found. Then the
critical pressure will be equal to the stated value of ql,' using Equation

[19], which established the relation between the actual critical pressure
and the critical pressure calculated from the theoretical Formula [q,]

q , - -- x , [ 2 3 ]
1 2

The magnitude of the correction factor V,, must be taken from
Table 9 for the already established thickness t. In case theoretical For-
mula (17) is used, the correction factor rq, must in addition be obtained
according to another expression (Formula [5, Section 34 of Part II).

where t is the shell thickness in centimeters.

The value of correction factor smust be taken from Table 10 for
a stress (corrected), equal to 0.8eT .

Finding the theoretical value of the critical pressure q. from
Equation (23) and knowing the value of 6 a t/r, we can, using Table 8 or the
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diagram in Figure 9, find the corresponding value of 7 - r/1, from which the

frame spacing becomes

a.... [25]

7

Example 1. Find the shell thickness t and the frame spacing I for a

submarine with shell radius r - 200 cm. with a given critical pressure ql

= 14 atm. Hull plating is steel with a yield point sT a 3000 atm.

a. Shell thickness from Equation [22],

- 1.4 f - 1. cm - 18 MM

b. Correction factor from Equation [24 ,

c. Correction factor i? from Table 10 for the adjusted stress

0.8#T- 0.8 (3000) - 2400 atm.,

'2 -0.8

d. Theoretical critical pressure from Equation [23),

Is 14.________ - 22.7 At
il'12 0.77 X 0.8

e. From Table 8 or the graph in Figure 9, the quantity y, corre-

sponding toq, - 22.7 and I a t/r - 1.3/200 - 6.5 x 10-3, is

y - 2.88

f. The required frame spacing by Equation [251 is

L - - 0-70 cm
y 2.88

Example 2. Find the shell thickness and frame spacing for the same

shell radius r = 200 cm. and critical pressure ql, w 14 atm., for an in-

crease in elastic limit a, to 4000 atm.

a. Shell thickness from Equation [22],

9 - 1.4 14 O- 0.98 cm - 9.8 mm
4000
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b. The correction factor vj, by Equation [24 I,

,," -)0.69

c. The correction factor 4. from Table 10 for a stress of 0.8vy

- 0.8 (4000) - 3200 atm.,

2 - 0.76

d. Theoretical critical pressure according to Equation [23),

- 1 x 14 - 26.8 Uap
0.69 x 0.76

e. From Table 8 or the graph in Figure 9, the quantity Y corre-

sponding to . a 26.8 andA - 0.98/200 = 4.9 x l0-, is

y - 6 .4

f. Frame spacing from Equation (25],

M - 81 CM
6.4
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TABLE 1

Evaluation of Stresses and Deflections
of the Shell

Name of Object (Item)

Frame cross section area

Radius of the null r = 200 cm F = 24.9 cm2

Cross section area of the shell
Thickness of the shell t = 1.3 cm 2
____________________________________ t =91.0 cm

Total area of the cross section
Frame spacing I = 70 cm 2

F + It 
= 115.9 cm

6 6.5.10-3 /- 6 = 0.805 f = 0.85-L-= 3.1r Fr 2 F

=-E = 2.86 2 :8.15 k F+-- = 0.215

q 15 am E =2.10
6 

am VI 7= 9.31

a 3.46 -v =0.795 c=0.062 1  0: 0 =0.715

N = 1.025 P = 2.44

M 
= 0.863 Q = - 0.400

Calculation of deflections Calculation of stresses

Reaction of the EF (10) 1342 k N 0.440 12 shell on the frame 2"

R 
r

k 0 3 Stress in the cross E (10) -1070() 0.149 13 section of the frame r

Transverse cross Inner
37 Y'q • (2) 674 14 section surface -(6) - () -2795

0)15 outer -(6) + (4) 4851 surface

()1 Longitudinal cross Inner
(3) -270 lb Logtdna . (14) + (13) -1905

- section surface 0.3

6 1155 1.7 Outer 0.3 • (15) + (13) - 925
2" surface

7 3.4 - M 2.93 ]. Transverse cross Inner -0) - M - 885
section surface

8 f + (7) b.03 ]9 -0 i Outer -(6) (5) -1.425
surfice

r (2) 0 Longitudinal cross Inner -34
9 0.0344 20 section surface " (13) + 0.3 (3A) -2345

c Ou te r
10 of the frame 0.3.07 21 r ax -2505

f • (9) 2 surface m (13) + 0.3 (39)
U 0 L

11 t A x 0.20N 22 Meanl stress in I.
emax t2 e shell i ----. (13) + 0.3.(b) -2425

(8). (9) __0



TABLE 2

Magnitudo of Quantity N

0 0.6 0.7 0.8 0.9

0.325 2.910 2.943 2.983 3.063 3.167

0.350 2.663 2.686 2.724 2.783 2.863

0.375 2.453 2.477 2.510 2.550 2.630

0.400 2.270 2.300 2.330 2.376 2.476

0.425 2.110 2.140 2.173 2.230 2.367

0.450 1.963 1.990 2.033 2.107 2.290

0.475 1.834 1.867 1.910 2.000 2.213

0.500 1.723 1.757 1.806 1.917 2.157

0.550 1.527 1.567 1.640 1.773 2.060

0.600 1.360 1.423 1.462 1.526 1.605

0.650 1.215 1.279 1.322 1.390 1.480

0.700 1.086 1.156 1.200 1.268 1.363

0.750 0.982 1.054 1.098 1.165 1.259

0.800 0.888 0.957 1.006 1.073 1.170

0.850 0.800 0.870 0.918 0.988 1.087

0.900 0.720 0.789 0.839 0.908 1.018

0.950 0.646 0.713 0.761 0.831 0.951

1.0 0.580 0.644 0.689 0.759 0.881

1.1 0.464 0.520 0.560 0.626 0.737

1.2 0.363 0.412 0.444 0.500 0.593

1.3 0.285 0.323 0.350 0.393 0.474

1.4 0.228 0.256 0.277 0.313 0.376

1.5 0.181 0.206 0.222 0.246 0.291

1.6 0.145 0.164 0.176 0.195 0.232

1.7 0.117 0.131 0.141 0.156 0.185

1.8 0.0940 0.1048 0.1124 0.128 0.167

1.9 0.0788 0.0874 0.0934 0. 1045 0. 1285

2.0 0.0652 0.0720 0.0680 0.0844 0.1060

2.1 0.0536 0.0586 0.0624 0.0672 0.0780

2.2 0.0434 0.0478 0.0508 0.0546 0.0622

2.3 0.0344 0.0404 0.0428 0.0456 0.0518

24 0.0312 0.0344 0.0364 0.0386 0.0442

2.5 0.0268 0.0292 0.0308 0.0326 0.0376

2.6 0.0232 0.0242 0.0260 0.0274 0.0316

2.7 0.0196 0.0210 0.0220 0.0236 0.0267

2.8 0.0170 0.0182 0.0188 0.0202 0.0230

2.9 0.0148 0.0158 0.0164 0.0178 0.0196

3.0 0.0130 0.0140 0.0144 0.0156 0.0170

3.1 0.0112 0.0120 0.0126 0.0136 0.0150

3.2 0.0102 0.0108 0.0112 0.0120 0.0130
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TATILE 3
Magnitude of Quantity Sj

C 00 0.6 0.7 0.8 0.9

0.325 1.700 1.720 1.740 1.766 1.795
0.350 1.580 1.600 1.635 1.665 1.695

0.375 1.473 1.495 1.535 1.565 1.600

0.400 1.386 1.410 1.440 1.470 1.507
0.425 1.310 1.335 1.357 1.387 1.425

0.450 1.243 1.270 1.290 1.317 1.355

0.475 1.187 1.216 1.240 1.265 1.305
0.500 1.140 1.170 1.195 1.222 1.262
0.550 1.058 1.093 1.117 1.147 1.195

0.600 0.990 1.033 1.063 1.100 1.153
0.650 0.925 0.976 1.011 1.054 1.115

0.700 0.863 0.919 0.958 1.008 1.077

0.750 0.803 0.862 0.905 0.960 1.040

0.800 0.743 0.805 0.849 0.909 1.000

0.850 0.684 0.747 0.792 0.855 0.958

0.900 0.626 0.689 0.735 0.800 0.914
0.950 0.570 0.632 0.677 0.744 0.860

1.000 0.516 0.575 0.620 0.687 0.802

1.1 0.416 0.472 0.510 0.575 0.684
1.2 0.334 0.383 0.410 0.464 0.560

1.3 0.264 0.302 0.326 0.370 0.450
1.4 0.210 0.240 0.260 0.297 0.356
1.5 0.168 0.191 0.207 0.234 0.280

1.6 0.134 0.152 0.165 0.183 0.222

1.7 0.109 0.122 0.132 0.145 0.178
1.8 0.0884 0.0998 0.172 0.1185 0.136
1.9 0.0738 0.0826 0.0888 0.0974 0.1108

2.0 0.0612 0.0676 0.0728 0.0792 0.089E
2.1 0.0500 0.0564 0.0592 0.0644 0.0726

2.2 0.0412 0.0458 0.0488 0.0528 0.0598
2.3 0.0344 0.0384 0.0406 0.0438 0.0496

2.4 0.0292 0.0320 0.0338 0.0364 0.0408
2.5 0.0250 0.0272 0.0286 0.0304 0.0340

2.6 0.0216 0.0232 0.0244 0.0260 0.0288

2.7 0.0188 0.0198 0.0208 0.0224 0.0248
2.8 0.0160 0.0170 0.0178 0.0194 0.0215

2.9 0.0138 0.0144 0.0152 0.0170 0.0186

3.0 0.0120 0.0126 0.0132 0.0148 0.0162

3.1 0.0106 0.0112 0.0118 0.0130 0.0140

3.2 0.0098 0.0101 0.0104 0.0116 0.0123



TABLE 4

Magnitude of Quantity P

C 0 0.6 0.7 0.8 0.9
a

0.325 32.7 33.3 33.5 34.0 34.7

0.350 26.4 26.9 27.3 27.6 28.3

0.375 21.1 21.5 21.9 22.3 22.8

0.400 17.2 17.6 17.8 18.2 18.6

0.425 14.4 14.7 14.9 15.2 15.5

0.450 12.2 12.4 12.6 12.9 13.2

0.475 10.4 10.55 10.75 11.0 11.3

0.500 8.8 9.0 9.25 9.45 9.85

0.550 6.45 6.7 6.85 7.00 7.40

0.600 5.13 5.28 5.34 5.43 5.76

0.650 4.03 4.17 4.24 4.35 4.59

0.700 3.24 3.38 3.46 3.56 3.73

0.750 2.65 2.77 2.85 2.95 3.10

0.800 2.18 2.30 2.38 2.47 2.60

0.850 1.83 1.93 1.99 2.10 2.25

0.900 1.55 1.64 1.70 1.80 1.94

0.950 1.32 1.39 1.46 1.55 1.67

0.1 1.13 1.205 1.5 1.34 1.48

1.1 0.824 0.912 0.950 1.26 1.12

1.2 0.633 0.684 0.723 0.784 0.874

1.3 0.480 0.520 0.550 0.605 0.690

1.4 0.374 0.400 0.430 0.465 0.535

1.5 0.292 0.312 0.330 0.360 0.414

1.6 0.228 0.248 0.262 0.286 0.326
1.7 0.186 0.200 0.211 0.228 0.250

1.8 0.1490 0.1606 0.1694 0.1828 0.2048

1.9 0.1230 0.1324 0.1392 0.1472 0.1588
2.0 0.1004 0.1078 0.1134 0.1190 0.1270

2.1 0.0804 0.0876 0.0918 0.0976 0.1050

2.2 0.0654 0.0716 0.0754 0.0804 0.0870

2.3 0.0550 0.0594 0.0628 0.0666 0.0724

2.5 0.0404 0.0426 0.0444 0.0468 0.0500

2.6 0.0348 0.0370 0.0380 0.0400 0.0432

2.7 0.0302 0.0320 0.0330 0,0346 0.0384
2.8 0.0264 0.0278 0.0288 0.0302 0.0324

2.9 0.0232 0.0242 0.0252 0.0264 0.0280

3.0 0.0200 0.0210 0.0220 0.0232 0.0242

3.1 0.0174 0.0182 0.0190 0.0200 0.0212

3.2 0.0159 0.0160 0.0165 0.0175 0.0185
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TA93,E 5

Magnitude of Quantity Q

0 0.6 0.7 0.8 0.9

0.325 0.156 150 0.150 0.138 0.130

0.350 0.194 0.210 0.223 0.223 0.223
0.375 0.225 0.257 0.273 0.287 0.295

0.400 0.248 0.288 0.304 0.330 0.352

0.425 0.252 0.298 0.321 0.353 0.390

0.450 0.248 0.284 0.320 0.350 0.400

0.475 0.218 0.255 0.294 0.329 0.390

0.500 0.177 0.177 0.218 0.290 0.368

0.550 0.048 0.095 0.125 0.165 0.228
0.600 -0,074 -0.060 -0.035 -0.007 0.045

0.650 -0.172 -0.170 -0.168 -0.160 -0.0140

0.700 -0.263 -0.254 -0.265 -0.278 -0.0294

0.750 -0.312 -0.332 -0.344 -0.373 -0.406

0.800 -0.346 -0.378 -0.401 -0.436 -0.490

0.850 -0.362 -0.404 -0.432 -0.480 -0.552

0.900 -0.360 -0.408 -0.442 -0.496 -0.582

0.950 -0.350 -0.400 -0.436 -0.494 -0.588

1.0 -0.334 -0.383 -0.420 -0.480 -0.582
1.1 -0.280 -0.339 -0.377 -0.430 -0.532

L2 -0.232 -0.286 -0.312 -0.361 -0.448

1.3 -0.195 -0.228 -0.253 -0294 -0.359

1.4 -0.160 -0.188 -0.208 -0.240 -0.296

1.5 -0.131 -0.151 -0.167 -0.192 -0.236

1.6 -0.105 -0.122 -0.133 -0.153 -0.186

1.7 -0.085 . -0.099 -0.109 -0.123 -0.148

1.8 -0.068 -0.080 -0.088 -0.098 -0.115

1.9 -0.0564 -0.0656 -0.0733 -0.0826 -0.0976

2.0 -0.0476 -0.0548 -0.0598 -0.0676 -0.0788
2.1 -0.0408 -0.0458 -0.0496 -0.0552 -0.0624
2.2 -0.0346 -0.0378 -0.0408 -0.0446 -0.0510

2.3 -0.0292 -0.0310 -0.0330 -0.0362 -0.0424

2.4 -0.0244 -0.0258 -0.0374 -0.0300 -0.0352
2.5 -0.0210 -0,0220 -0.0232 -0.0254 -0.0292

2.6 -0.0181 -0.0191 -0.0200 -0.0216 -0.0248

2.7 -0.0158 -0,0168 -0.0176 -0.0190 -0.0214

2.8 -0.0136 -0.0144 -0.0152 -0".0167 -0.0190

2.9 -0.0116 -0,0124 -0.0132 -0.0144 -0.0168

3.0 -0.0100 -0.0108 -0,0114 -0.0126 -0.0148

3.1 -0.0080 -0.0088 -0.0094 -0.0108 -0.0128

3.2 -0,0075 -0.0080 -0.00845 -0.0092 -0.0102
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TABLE 6

u 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.00

K 3.31 2.99 2.67 2.36 2.06 1.78 1.62 1.30 1.10 0.37 0.83

k 3.18 3.04 2.90 2.73 2.64 2.54 2.49 2.49 2.53 2.65 2.74

TABLE 7

Number of Waves n, Corresponding to the
Loss of Stability of the Shell

Ranges of the Number Ranges of the Number

change of the of change of the of

quantity Waves quantity Waves

y 2 n 2
= r_ r
it 6  it

0-- 1 2 285-- 345 J.4

1-- 4 3 345-- 435 15

4-- 10 4 435-- 535 16

10-- 17 5 535-- 645 1.7

17-- 28 6 645-- 900 1.8

28-- 45 7 900-- 1.350 19

45- 68 8 1.350-- 1950 20

68-- 95 9 1950-- 3650 21

95--130 10 3650-- 7100 22

130--175 11 7100--1.5500 23

175--225 12 15500--31500 24

225-285 13 31.500--633.00 25
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TABLE 8

Loading q,, Corresponding to the Loss of
Stability of the Shell

(E = 2 x 10 6 kg/cm )

3 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

].0 1.6 2.3 3.] 4.1 5.3 6.5 8.0 9.7 1.7 14.0 16.2 18.6 21.3 24.3 27.5

2.5 2.6 2.9 4.1 5.5 7.0 8.9 3.1.0- 12.9 15.5 19.0 22.0 25.7 29.2 33.5 37.4

2.0 2.5 3.7 5.3 b.8 9.0 11.0 34.0 17.6 19.4 24.1 27.6 32.3 37.2 41.7 47.3

2.5 3.1 4.4 6.1 8.2 10.7 13.5 16.5 20.0 23.4 28.0 33.0 39.5 46.0 53.5

3.0 3.b 5.2 7.2 9.5 12.9 15.5 19.8 23.5 28.0 33.6 40.0 47.5 55.0

3.5 4.3 6.3 8.3 1.1.0 1.4.8 17.4 21.3 26.2 32.5 38.0 46.0 55.0

4.0 4.9 7.0 9.5 12.6 17.0 20.5 25.5 31.0 37.5 44.0 53.5

4.5 5.5 8.0 10.8 34.5 1.9.0 23.0 27.5 32.5 42.5 49.5

5.0 6.3 9.2 12.3 1b.4 21.4 26.0 33.5 41.0 49.5

5.5 6.8 9.8 3.3.5 18.5 23.8 29.8 37.5 46.2

6.0 7.5 11.0 15.0 20.5 2b.3 33.2 43.5 52.8

6.5 8.2 12.0 lb.5 22.6 28.8 37.0 47.3

7.0 9.0 13.0 1.8.3 24.8 31.7 41.0 54.0

7.5 9.M 14.2 19.8 27.0 35.0 46.2

8.0 10.5 1.5.4 23.5 29.,2 37.5 51.7

5.5 11.3 3".5 23.4 31.5 42.2

(.0 32.0 15.2 25.3 34.0 46.2

9.5 32.5 20.0 27.3 37.0 50.0

30.0 33.7 23.5 29.5 40.5 54.7

TABLE 9

Correction Factor I]l

t mm 4 5 6 7 8 9 10 11 12 13 15

'o riu1 at'_

(15) 0.45 0.57 0.69 0.80 0.90 0.99 1.05 1.10 1.15 1.18 1.21

(16) 0.42 _0.52 0.62 0.72 0.81 0.88 0.93 0.97 1.00 1.02 1.04

(17) 0.30 0.39 0.48 0.55 0.62 0.68 0.72 0.76 0.78 0.80 0.83
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TABLE 10

Corrected Euler's Stresses and Correction Factors

Ouer's Corrected Wauer's Stresses
Stresses and Correction Factors
as per

Theoretical Ordinary Steel of Manganese
Formlas steel higher quality steel

O f o1 2 a I 2 1 1 2

0 0 - 0 - 0 --

200 200 1.00 200 1.00 200 1.00

400 400 1.00 400 1.00 400 1.00

600 560 0.93 580 0.97 580 0.97

800 720 0.90 760 0.95 760 0.95
1000 880 0.88 940 0.94 940 0.94

1200 1020 0.85 1110 0.92 1120 0.92

1400 1160 0.83 1280 0.91 1300 0.91

1600 1280 0.80 1440 0.90 1460 0.91

1800 1390 0.78 1600 0.89 1630 0.90

2000 1480 0.74 1740 0.87 1800 0.90

2200 1570 0.71 1860 0.84 1940 0.88

2400 1640 0.68 2020 0.84 2100 0.87

2600 1720 0.66 2140 0.82 2240 0.86

2800 1780 0.64 2260 0.81 2380 0.85

3000 1840 0.62 2400 0.80 2500 0.83

3200 1890 0.59 2500 0.78 2640 0.82

3400 1940 0.57 2600 0.76 2760 0.81

3600 1980 0.55 2660 0.74 2900 0.80
3800 2020 0.53 271.0 0.71 3000 0.79

4000 2060 0.51 2780 0.69 3100 0.77
4200 2100 0.50 2860 0.68 3200 0.76

4400 2140 0.49 2900 0.66 3300 0.75

4600 2180 0.47 2960 0.64 3380 0.74

4800 2200 0.46 3000 0.62 3440 0.72

5000 2230 0.44 3060 0.61 3520 0.70

5200 2260 0.43 31.00 0.60 3580 0.69

5400 2290 0.42 3200 0.59 3640 0.67

5600 2320 0.41 3240 0.58 3720 0.66

5800 2340 0.40 3280 0.57 3780 0.65

6000 2360 6.39 3320 0.55 3820 0.64

6500 2420 0.37 3360 0.52 3940 0.60

7000 2460 0.35 3440 0.49 4040 0.57

7500 2500 0.33 3520 0.47 4140 0.55

8000 2540 0.32 3580 0.45 4240 0.53

8500 2580 0.30 3640 0.42 4380 0.51

9000 2600 0.29 3700 0.41 4420 0.49

9500 2640 0.28 3740 0.39 4500 0.47

10000 2670 0.27 3820 0.38 4580 0.46
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TABLE 11

Calculation of the Stability of the Shell According to Formulae (15), (16), and (17).
Actual Critical Pressure q,, and Average Compressive Stress ip

in Metric Atmospheres.

t1 - 1.3 cm r 200 cm 1= 70 cm

r. t
,=-=2.86 8=- =6.25.10- 3

9 = 1.25 on I r

n= 16 a2 w2y2 -80.7 =9,14 = 0.79

4.4. 106. 8 a2 82

21 - 0 -- [ +- (n +a2)2] -24 at

1. = 1qI-- - 3340 aft 12=0.77

qt,- 12119P = 14.6 aim 0a, = 2a, - 2570 atm

100 t
, =0.625 11 , 1.01

!-t

910= 198 (y282)O.S 5 19 atmH

9V r
at 1.17 , 3380 atm 172 .0.77

ql1 = 11112 qp 14.8 atm a = 1 20 - 2600 atm

100 t82 = - = 1.79 1.165

3

18.38 8 2 82=16.2 aim

0t 1.1q I # = 3300 atm 12 = 0.77

qlI= 1q2qp = 14.5 atm a1, = q21' = 2540 atm
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CHAPTER 3

STRENGTH ANALYSIS OF FRAMES.

8. CONTRIBUTION OF FRAMES IN SECURING THE STRENGTH

OF THE HULL AND THEIR VARIOUS DESIGNS

1. In the design of the outer hull of submarines, frames play the same

role as the ordinary system of transverse members in the hull of surface
vessels; these frames assure, in essence, the local strength of the outer

hull subjected to hydrostatic pressure, wave impact, and other loadings, de-

pending on the disposition of the corresponding parts of this hull (side
tanks, deck tanks, etc.). Therefore, the strength analysis of frames of

outer hulls may be carried out by the usual methods and procedures appli-
cable in surface-vessel construction, considering the practical require-

ments and structural peculiarities of submarine hulls.
As distinctive features of the frames of the outer hulls of sub-

marines (compared with those of surface vessels of corresponding dimensions),
we may enumerate their more complicated design and the necessity of their
structural correlation with the framing of the pressure hull of the subma-
rine. The requirements of such a correlation may make it expedient to com-
pletely or partially identify the frames of the outer hull with those of the
pressure hull at the expense of their proper mounting and strengthening in
accordance with those stability requirements which must be met by the pres-
sure hulls of submarines.

The strength of frames of those parts of the outer hull serving
as the walls of ballast side tanks, deck tanks, and other tanks, must be

checked with respect to the loading changes occasioned by blowing down

these tanks or other specific requirements.

2. The role of frames of the pressure hull in guaranteeing its gen-
eral transverse strength at the limiting depth of submergence of the sub-
marine is determined by the design of the frame structure, i.e. by the type
of organization of the corresponding sections of the pressure hull. In

this respect, a distinction must be made between circular and non-circular

frames. From the point of view of structural mechanics, both represent

closed, curved beams subjected to the action of distributed compressive

loading in the form of reactive stresses set up between the frames and the

plating of the pressure hull during bending of the plating, caused by the
water pressure.

For the case of a purely circular hull, the plating itself almost

completely balances out the pressure of the water uniformly distributed over
its surface, being loaded by chain compressive forces and only partially

transmitting this pressure to the frames in the form of the reactions men-

tioned, which appear as a result of the fact that the frames impede the free
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compression of the plating at points of their mounting.

These reactions of the frames somewhat relieve the load on the

plating only at the points where they are mounted, while not influencing

noticeably the magnitude of stresses in the span between frames. Further-

more, occurrence of these reactions causes a bending of the plating in the

spans between the frames; consequently, supplementary stresses occur in the

supporting sections of the plating due to bending. The greater the rigidity

of the frames, the greater is this bending. As the result of the foregoing

(and as follows also from the formulas for calculation and from the numerical

examples for the bending of the plating, cited in Part II, Chapter 1), the

presence of frames not only does not diminish stresses in the plating but

increases them appreciably, and in a larger measure with greater frame ri-

gidity. This circumstance has stimulated several authors to recommend re-

ducing the dimensions of the spaces adjacent to the bulkheads, to compensate

thus for the effect on stresses in the plating resulting from high rigidity

of the bulkheads. However, such a measure can not be considered justifiable,

since the increase of these stresses occurs only close to the frame system

which supports the plating, a fact that permits considering these stresses

as purely local in character.

Despite their negative influence on the stress magnitude in the

plating, circular frames appear to be an absolutely necessary element in

the structure of a hull, since they play a decisive part in assuring the

stability of the plating in the spans between the transverse bulkheads.

The frames break up these spans into shorter ones so that the stability of
the plating becomes sufficient to respond to and equilibrate the outside

water pressure acting upon it. In addition to this fundamental purpose of

circular frames, they must also react to those bending stresses which occur
in the sections of circular hulls resulting from non-uniformly distributed

external hydrostatic loading along the perimeter (Part 1, Section 2). How-

ever, due to their comparatively small magnitude, these bending stresses

have practically no effect on the dimensions of circular frames required to

satisfy their basic purpose as stated.

Non-circular frames (elliptical and others), in addition to guar-

anteeing the stability of the plating, must also assume the large bending

stresses occurring in the hull sections whose shapes differ from a regular

circle.

Design dimensions of non-circular frames, in contrast to circular

ones, are determined with respect to their resistance to bending. This

leads to a significant increase in dead weight in comparison to circular

frames; this increase becomes very much greater with increase of the design

depth of submergence of the hull. The latter circumstance appears to be the

chief reason for refusal to use elliptical hull shapes on contemporary sub-

marines, though elliptical hull sections were widely employed in the early

period of submarine development when the limiting depth of submergence was
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more moderate.

3. It is especially fitting to note the great significance of the

frames in assuring the strength of the hull against underwater explosions

and other local, incidental stresses to which it may be subjected under the

various conditions of operation of a submarine (impact against the bottom

and when mooring, cruising in ice, etc.).

The experience gained by combat operation of submarines has shown

that the hydraulic impact of water during depth bomb attack, or resulting

from mines or aerial bombs, often produced dents and hollows in the plating

in the areas between the frames without causing leaks. Sections of the

plating thus deformed are no longer able to transmit the water pressure

upon them to adjacent undeformed portions of the structure; these areas of
the plating will operate as flexible plates transferring the pressure of the

water to the frames. In this case, as in all other cases of local impression

or denting of the plating, the survival of the hull at great depths of im-

mersion will be guaranteed only by the local strength of the frames.

The role of the frames mentioned in assuring combat strength of

the hull, which has become particularly significant in view of the contem-

porary development of submarine warfare, makes the establishment of the
structural specifications of frames mandatory not only according to the cal-

culation of their general stability for strength requirements, but must

take into account also the necessity for a sufficient local stability --

these features being determined by previous practical combat operation of

submarines as a general guide.

9. STRENGTH ANALYSIS OF CIRCULAR PRISMATIC FRAMES.

1. Stability Analysis. Circular frames must remein stable at a loading
on the hull, corresponding to the instant of loss of stability of the

plating in the spans between the frames, i.e., at a loading qp corresponding
to the design depth of submergence of the submarine.

Assuming that every frame with the belt of plating adjoining it
operates individually, i.e., disregarding the favorable effect on the frame

stability of the presence of transverse bulkheads, the conditions cited

above require satisfaction of the following inequality (Part 2, Section 31):

3 Vt > pel

vhere q is the design pressure equal to 0.1 hp (hp a the design depth of
submergence in meters); I is the distance between the frames; I is the

moment of inertia of the sectional area of the frame, including the sec-

tional area of the adjoining portion of the plating It; r is the radius of

the circle of a frame, calculated to the outer edge of the plating (for

greater exactitude in calculation, we should substitute for r3 in Equation

[11 the quantity r'r, where r, is the radius of the frame to the neutral
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axis).
The left term of the inequality [i represents the well-known ex-

pression for the Euler load of a ring subjected to a uniformly distributed

circumferential load. A section of this ring is taken as consisting of the

section of the frame itself and the section of that portion of the plating

adjoining it, it. In reality, the plating, as a result of loss of stability

in the span between the frames, will no longer be able to assume a full share
of the bending load in the ring under consideration; therefore, the left

side of inequality [1] may prove to be too large. A certain increase must
also result from the absence in inequality [1] of a correction factor, less

than unity, required to account for the effect of ,the stress magnitude on

stability (Part 2, Section 33).

These circumstances are practically taken into account simultane-
ously with favorable effect on the stability of frames of transverse bulk-

heads by introducing, into the expression for Euler's loading of a frame,

a practical coefficient by which the structural dimensions of frames, which

satisfy Equation [i], are found to be in accord with previous experience in

submarine operation insofar as survival of the hull be concerned (Part 1,
Section 8, Paragraph 3).

Taking this practical coefficient as equal to 1.5, we get the
following formulas for the analysis of the stability of circular frames

(in kg, cm).
The magnitude of the design load qp, corresponding to the given

maqnitudes of r, I and I, will be
3El

1.5 r3 1
or < 2E1

The neccessary magnitude of the moment of inertia of the cross-
sectional area of the frame (together with the plating) for given quantities
qp, r and , is

that is, [3]
2" .!31  [cm4]

It must be emphasized that the design Formula [31 which determines
the structural dimensions of frames, must guarantee not only the general
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stability but also the local stability and strength upon vhich the extent of
combat strength and survival of submarine hulls depends. Therefore, any de-

crease of the structural dimensions of frames contrary to those required by

Equation [3] is impossible without deleterious effect to the combat strength
of the hull, even though such reduction might be Justified from the point of
view of guaranteeing the general stability of the frames (inclusion of sup-

plementary structural connections such as tank walls, decks, bulkheads, eto.).

2. Stress Analysis. A circular frame, from the point of view of struc-

tural mechanics, is considered to be a prismatic ring, subjected to the action

of a load uniformly distributed along its circumference. In the cross sec-

tions of such a ring, as is well-known, bending moments and shearing forces

are absent and only longitudinal forces are set up; these are equal to

Smpr [4]

where p is the external load, per unit of length of the ring; r is the radi-

us of the circle along which the load is applied.

The stress in the sections of the ring, corresponding to the load-

ing p, is found to be

F -F

where F is the sectional area of the ring.

The frames of the hull are rings of molded (profiled) steel, weld-
ed or riveted to the hull plating. When a loading p applies on the frames,

a stress develops between them and the plating. In calculation of the plat-

ing, this stress was designated by the symbol R and was defined by the ex-

pression (Part 1, Section 5, Paragraph 3):

EF

r --- e(6

where Q is the compression of supporting sections of plating (of frames)

at a given design load qp, applied on the hull of a submarine.

Taking p - R in Equations [] and (5], we get the following ex-
pressions for the longitudinal forces and stresses in the sections of the

frame:

a - EF [7]

[8)

In reality, the stresses in the sections of a frame may exceed sig-

nificantly the theoretical stress, determined by Equation [8], as the result
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of bending moments occurring in the section of the frame. Bending of frames

arises from (a) the compensation, on the frames, of the forces of buoyancy

and of the dead weight of a submarine (Part 1, Section 2) and (b) the con-

sequence of a certain and practically unavoidable deviation of the shape of

the frames from the true circular form (Part 1, Section 23). Additionally,

it must be considered that after stability has been lost in the plating, in

the spans between frames, the load on the frames must increase sharply,

since the plating is no longer able to react to the water pressure applied

on it.

All these circumstances force to limit the magnitude of the

stresses obtained by the theoretical Formula [8], in order to guarantee the

absence of excessive stresses in the sections of the frames which may great-

ly weaken their stability.

Calculations based on current industrial tolerance for determina-

tion of permissible deviation from true circular design of frames, led to

the conclusion that stresses in the sections of frames calculated according

to Equation [8) must not exceed 31 of yield stresses of the frame material.

In this case, the formula for checking the stability of the frames

with respect to stress is stated:

-r eoJs ar  19 ]

where r is the outside radius of the frame, Ar is the yield stress of the

material, wO is the compression of the frames resulting from the applica-

tion on the hull of the design load qp.

The stresses in the sections of a frame, determined by the left

side of Equation [91, are obtained in the calculation outlined in Chapter II
for the strength of plating and may, therefore, be taken directly from that

analysis; see Table 1.

3. Tabulated Calculation of the Stability of a Frame. The check cal-

culations of the stability of frames according to Equations (2] and [9]
should be tabulated; see Table 12.

In the upper part of the table are given the radius of the hull r,

the thickness of the plating t, the length of the span I, the profile of

the frame, sectional area F, the distance of the center of gravity of its

area from the lower edge e (position of neutral axis), and the moment of

inertia of its area i. Further, the usual table for computing the moment

of inertia of a frame section is made up, consisting of the assumed profile

and a portion of the plating of a width equal to the length of the span.

In the next to the last line the load* is computed, determined by the

*Editor's Note: The author calls it "critical pressure". See Table 1,

q * l at&.
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right-hand term of Equation [2], which is compared with the design load qp.
In the last line is written the stress in the frame due to the de-

sign load; this stress can be taken according to line- 13 of Table 1. This

stress, is compared with the standard, established by Equation [9].
Table 12 contains initial data which were examined in previous

numerical examples.

10. STRENGTH ANAL!SIS OF CIRCULAR NON-PRISMATIC FRAMES.*

By the term non-prismatic frames is understood a circular frame
consisting of individual parts of different cross section, whereby the neu-
tral axes of the cross sections of these parts may lie on circles of differ-
ent radius. Such frames in practical construction of submarine hulls are

encountered in the following forms.

1. The neutral axis of the entire frame forms one circle, but the
moments of inertia (rigidity) of the sections of the frames vary along the

length of this circumference (Figure 93).
Investigation of the deformation of such a frame leads to the con-

clusion that a change of rigidity (i.e. of moments of inertia) of the sec-
tions of a frame, loaded at a uniform pressure, does not cause supplementary
deformations in it, independently of the radius of the circle along whose
circumference the external pressure is applied.

2. The rigidity of the one part of the frame is large in comparison
with the rigidity of the remaining portion of the frame whereby the neutral
axes of these parts of the frame lie on circles of differing radii (Figure
94).

In this case, on the portion of the ring which is less rigid, no
supplementary stresses occur, but in the more rigid part there appears a

constant bending moment, given by

M-qr(r 1 -r 2 ) [101

where q is the uniform pressure on the frame; r is the radius of the circle
upon which the pressure applies; r, is the radius of the neutral axis of the

more rigid part of the frame; r 2 is the radius of the neutral axis of the

less rigid part of the frame.

3. Thi frame consists of two half-rings of equal rigidity vhose neu-
tral axes are equidistant by a distance e from the middle circle at whose
periphery the external pressure applies (Figure 96). In this case, in the
sections of the frame, there are produced the following moments ad forces:

bending moments:

me  qr (I -A sin 6) t111

*Theoretical foundations cited in Sections 25 and 26, of Part 2.
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axial forces:

So--a q,(1 - sin a) [12]

shearing forces:
r me - 4 q e o0

where r is the radius of the circle at which the external pressure

acts;

e is the distance from the neutral axes of both parts of the

frame to the circumference of the circle of radius r;
a is the angle defining the position of the section of the frame;

p = e/r is a small quantity whose square may be disregarded in compar-
ison with unity.

4. The frame has a local increase of thickness (height) whereby the

external pressure is applied at the outer circumference of the frame.

[Figure 95].
In this case, supplementary bending moments occur only in the

strengthened portion of the frame; their magnitude is determined by Equation

[10].

11. STRENGTH ANALYSIS OF ELLIPTICAL FRAMES.

1. In the design of submarines, elliptical frames represent from the

point of view of structural mechanics elastic rings of elliptical shape

subjected to the action of an external distributed pressure, transmitted to

them through the plating which is secured to them and to terminal rigid
bulkheads of the same elliptical shape. Investigation of the deformation

of such a complex system encounters such great difficulties that a solution

of this problem, suitable for practical application, does not exist. There-

fore, for calculating the stability of elliptical frames, approximations,

and consequently provisional methods of computation must be usedceorrecting

these values by the establishment of appropriate standard for the allowable

stresses, correlated with previous practice in submarine construction.

2. Let us first investigate the deformation of an isolated elliptical

frame under the action of a load uniformly distributed along its circumfer-

ence (rigure 10). Such a frame may be considered as circular, but having

a comparatively large initial deflection, i.e. a large deviation from its

original true circular shape. In the sections of such a frame, in additioh

to the axial forces, occurring in the usual circular frame, there must also
occur bending moments proportional in magnitude and sign to the total, i.e.
initial ad elastic, deflections of the frame.

Indicating by a and b the major and the minor semi-axes of the
ellipse, it is possible, if their difference is small, to take the radius

of the mean circle of the ellipse as equal to r 1 l/2(a + b) and the
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deflection of the initial bending at the ends of the semi-axes as equal to

ta°, (-) fb'-b-- -) [14]
2' 2

Applying to this case the conclusions stated in Part 2, Section

29, for a ring having an initial deflection, we get:

elastic deflection (sag from true circle):

1 1

Afa = fa(p ip)_ A;fb = fb(p/p)[

total deflection (sag):
1

fa+ Af/=falp/, f. }

1 3'[16]
fb +  Afb fb 1 -p f b'J(6

bending moments without consideration of elastic deflection:

M~'a - (i b)
.2 [17)i

N' P62

bending moments with consideration of elastic deflection:

Ma -IP,(, + Afl) - V.,
[18]

Mb Pb(fb + Afb) - Mb'A

where p is the load acting on the frame;

PA. is the Euler load of the frame;

pa, pb, are the axial forces in the section of the frame.

From the expressions cited, it is evident that the effect of elas-
tic deformation of an elliptical frame on the bending moments in its sec-

tions is taken into account by a factor

1
= I-Plpp[19]

At a loading p on an elliptical frame equal to half the Euler

load, pP, this factor is found equal to 2. At further increase of the load,

the importance of this factor increases rapidly as shown in Figure 11.

3-9



From the foregoing, it is clear to what extent elliptical frames are un-

favorable in comparison with purely circular ones, especially at loads
closely approaching Euler's.

From the expressions obtained, it is likewise evident that, in

the given case, proportionality between the magnitude of thq applied load

and the stresses produced by the load is absent in the sections of an ellip-

tical frame. This circumstance is taken into account by the substitution

in the calculations for the strength of submarine hulls of assumed safety
factors; substituted not into the stresses but into the acting load.

The expressions given under Equation [17] for the quantities MA

and M were developed under the assumption of a small difference between the

axes of an elliptical frame as is generally true for the elliptical frames

of submarine pressure hulls.

More exact expressions for the quantities M and M , developed

without the limitation indicated above, are given below and were determined

as a result of an analytical investigation of the deformation of an ellip-

tical ring. For this purpose, an investigation of the approximate solution

of the elliptical integrals encountered in such a problem was used.*

M a 2 2

pa [201
M b". 4-

2 2 2
vhere e a 1 - b /a , (eo = the eccentricity of the ellipse).**

In the presence of a rigid connecting member (stanchion or stay,

bulkhead, deck) coincident with the major or minor axis of an elliptical

frame, the greatest bending moments at the ends of the axes and the longi-

tudinal forces in the rigid member are found to be equal to:
with connecting member coincident with major axis:

e- -0.10S p a2 e02

N- -0.088 p? 2 o [211

S -1.1 e 2.

*Novozhilov, V. V., "Calculation of Stability of Elliptical Frames of Sub-

marines", Collection, HNBK (NIVK), Number 4, 1935; Translator's Note: NIVK

might be an abbreviation for "National Institute of War Ships."

**Editor's Note: The expression for M6 is obviously in error. Copied as it
stands in original.
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with connecting member coincident with minor axis:

Njf 0.1 pa32 ° d

Me- 0.08642o2 [22]

3. In the determination of the magnitude of Euler's loading of a
frame, which enters into the expression for the coefficient 0, it is appro-

priate to consider that the frames situated in the span between the trans-
verse bulkheads of the hull can not bend individually and independently be-
cause of their connection to the plating. Moreover, the plating in turn
(secured to the rigid bulkheads) resists such bending by developing shear
forces in its middle surface. This favorable influence of transverse bulk-
heads on the bending of elliptical frames can be taken into account by ap-

plication of the conclusions found in Part 2, Section 18.
Euler's load of individual frames, determined by the well-known

expression,

3Vl

P 3 [231

corresponds to a bending of frames in two waves (n a 2, Figure 6).
Euler's load for the entire assembly of frames between the trans-

verse bulkheads under this type of bending can be determined by Equation
[521 cited in Part 2, Section 18, assuming in this expression n - 2
and taking p. - q.1, where I is the distance between the frames, and where
q. is Euler's load, referred to a unit surface of the hull plating.

Substituting in the indicated expression n - 2 and q, - p3 /1, we
get

9+,- 2 +9
4- 9 +&2 +1_2 [12+ 02 g3j5]

12+02 2

where 8 - L/V "

a2 W 2 x,2 }Conventional Symbols

t is the thickness of the hull plating

r is the radius of the frames
L is the distance between transverse bulkheads
I is the moment of inertia of the sectional area of a frame, with con-

sideration for the area of plating equal to It

I is the distance between the frames.
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12. STRENGTH ANALYSIS OF FRAMES OF ARBITRARY SHAPE.

Strength Analysis of frames of arbitrary shape, i.e. determination

of stresses arising in the section of such a frame, is accomplished most

simply by application of the method of potential energy (principle of least

work).

Application of this method to the frame of arbitrary shape is il-

lustrated in the following example, worked out by Prof. P. F. Papkovich.

As an example, let us examine a closed curvilinear frame of a two-

hull submarine with a vertical axis of symmetry. At a great depth, the

pressure of the water may be considered very close to uniform. It usually

acts on the inner hull of the vessel (Figures 12 and 13). The dead weight

of the individual parts of the hull and even of mechanisms in submarines,

whose inner contour deviates from a circle,produces such small stresses

compared to those which result from the water pressure that the effect of

weight may usually be neglected.

In these cases, the frame ring of the vessel may be analyzed sole-
ly for external pressure, distributed uniformly over the surface of the
ship's skin. Since it has a vertical axis of symmetry and is loaded symmet-

rically with respect to this axis, its deformation may be considered also

symmetrical with respect to this axis.

This makes it possible to assume that in the sections coincident

with the diametral plane, the shear force in the frame ring equals zero.

The force and moments acting in these sections thus reduce only to the two

horizontal forces R, and R2 and the two couples",1 and~Nm, applied to the

half ring in its upper and lower supporting sections.

Let these forces and moments act on the right-hand half ring in

the direction of the arrows as shown in Figure 15. For their determination
we have at our disposal the two static equations. One of these gives the

sum of the reactions R, + R2 , and the other connects one of these reactions
with the load on the ring and with the moments9t1 andfkm. Therefore, for a

given frame, as statically indeterminate quantities, we must take either
both bending moments~ 1 and %2 or one of the moments 911 and one of the re-

actions R.

Taking, as statically indeterminate quantities, one of the forces
and one of the moments, it is necessary at the very end of the calculation

to find small differences of relatively large quantities in order to deter-

mine the magnitude of the bending moment in the various sections of the frame.

Usually when employing such a choice of unknowns, efforts to establish more
than one significant figure of the result are unsuccessful and even this may

be in error of 50% to 100% when all the calculations are carried out to three

decimal places.

Conditions are entirely different, if, as statically indetermi-
nate quantities, we take the reactive moments", and" 2 in the upper and

lower sections. In this case, the small differences of large quantities



must be determined at the very outset of the calculation, before the errors

become too highly cumulative.

Carrying out the computation in this case, similarly vith three

places, it is usually possible to obtain as correct the two first signifi-
cant figures in the result. Therefore, upon finding the indeterminateness

of frames of such type, it is always indicated to take both moments911 and
as the statically indeterminate quantities. Let us examine what type of

computation must be developed for the solution of the problem, given such a

selection of basic unknowns.

Let us introduce the following notation (Figure 131:
p is the magnitude of water pressure on a linear unit of the cir-

cumference of the frame (p - q?, where q is the pressure of wa-
ter and A is the distance between frames);

s is the coordinate of the center of gravity of the frame section be-

ing considered, measured along the circumference of its neutral axis;
y is the vertical coordinate of the same point, measured from the

line of application of the reactions;

is the length of the chord connecting those points of the pres-

sure hull in which it is intersected by the section being exam-

ined and the upper vertical section;
b is the lever arm of the center of gravity of this chord with

respect to the center of gravity of the section being examined.

Examining the moments and forces in the upper part of the frame,
we can write for the bending moment in a given section:

SAN1 + pab -RF [25]

In this expression, % 1 , p and R, do not change when we pass from
one transverse section of the frame to another, but a, b and y do change.

Let in the lower supporting section a = A and b = B, and let the distance
between the centers of gravity of the upper and lower sections equal B + C.

The bending moment in the lower section is

i 2 -qR + pAB -R1 (B + C),

from which

R1  9 2 -*A ,AB

Substituting this expression for R, in the general expression for
the bending moment, we get.

9M12 " I A,

- ab -9NI +C '13 +CY)



The quantity (ab - AB_ y) can be calculated for each section of
the frame by the numerical data taken from the diagram. Therefore, it can
be considered as some function f(s), depending on the coordinate of the sec-

tion a. Let us assume that the function f(s) is defined with the aid of the

quantity

f(s). 4(. AB A,
8+ C ~[26]

Thereupon, the expression for the moment becomes:

- I - + 2 B + (A2 / ( S)  [27]

If, after the indeterminate is established, the displacements
neither from shearing forces nor from longitudinal forces in individual sec-

tions are taken into account,but only the displacements due to bending, as

is usual, we can take for the general expression for potential energy

If we assume that in the frame, under zero water pressure, there
are no initial stresses, we can use the equations

-0, ay -O,

for the determination of the indeterminate or what amounts to the same

thing, the equations:

A(1- ~ do - O; 91 do -o0

These two equations ate equivalent to the expressions

de-O; E BC + C

0 0

wherein integration is extended over the entire half circumference of the

frame (along the entire half of the frame of the right side*).

*Editor's Note: Right side here may also refer to the starboard hull wall
of a ship.
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Developing these two equations, we get

12 0) - [28]

El ff
o0

FiJ" do +El -d + piA 2] B[291d =
" 0K 0 KI0 129

The integrals entering these equations can be calculated graphi-

cally or by the well-known principles of approximate methods, since any nun-

ber of particular values of integrand functions can be computed according

to the numerical data taken from the diagram. After they have been found,

the further solution of the equation does not cause difficulties. When the

momentsq 1 and l have been determined, the moments in all remaining sections

are easily found according to Equation [27).

For finding the values of the longitudinal forces S and the shear

forces N it is possible, having computed RI according to the following for-

mula

B +-B [301

to construct force triangles graphically, projecting the equivalent force of

the water pressure upon the chord and the force R, upon the tangent and nor-

mal to the section considered.
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TABLE 12

Name of Object
a tThickness of Plating Lenth of SpaceRadius of Hull: r =200 cm t - 1.25 cm [between frames) I - 70 cm

Position of Natural Moment
Profile of Frame: Sctional Area: Neutral Axis of Inertia

Channel Iron No 16 F- 24.9 cm2  e-8.0 cm i-954 cm

I I III IV V

Transferable
Calculation of Copsto hudrStatic Moment Natural

Moment of Cof ould e a Moment of Inertia Moment
Inertia Sctica P r Column Column of

for Frame: Sesin Am I X I[ 3 2 x 1 < Inerti a

Strake of PlatinSkech 1.25 x 70 0175

C h a n n e l8 . 2 4 9 2 41 49 5
Iron 161

1.. 1.9 112A,1 214 1844*0 954

Moment of Inertia: I 1844 + 954 - 2 bov .2390 cm112.4

Critical Pressure: 2o1 - 17 atm > wP

31

Line

Stress in Frame: E =[13].- 1070 < 0.35 ar.
S of
Table I

EDITOR's NOTES:

0 Probably a certain distance. in the text the author says I~t Is "a Portion Of the

plating e*"&l to the length of the space," but this was given above as 70 cm.

* Should be about 407 unless this Is the sum of above two items In which can*

the value for shoulder f 1.9 in woeng.



Figure 93
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Figure 95

Figure 96
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CHA-TER 4

STRENGTH ANALYSIS OF COMPOSITE FRAMES*

The composite frames of the pressure hull of a submarine are usu-

ally formed by separate parts of a circular or other shape, joined to each

other at the points of intersection by clamps or cleats; in the spaces be-

tween the joints, there are supplementary connections of one type or another.

The external, uniformly distributed load acting on the frame is applied
either along the outer or along the inner contours of the separate parts of
the frame.

Frames of such design are usually mounted in the vicinity of the
various tanks of the pressure hull (Figures 14 to 17), but under certain

conditions, it may be found expedient to employ composite frames even for the

structure of the entire pressure hull (Figures 18 and 19).

Before passing to the exposition of the strength analysis of com-
posite frames, we must first enumerate certain propositions, or lemmas#

used in these calculations.

13. PRELIMINARY PROPOSITIONS.

1. If there is a segment of a straight line AB, of length s and a

force equal to P - ps, directed normally with respect to AB, then the com-

ponents of the force P in any two given directions XX and YY are conse-
quently equal to (Figure 20):

T- ry 7 p

vhere x and y are equal to the components segment AB for directions norml

to those given. This proposition results directly from the siallitude of

figures obtained by a geometric resolution of the force P and the segment

AB In the given directions.
In particular, if the given directions are mutually perpendicular,

the quantities x and y appear as projections of AB in thesp directions

(Figure 21).
2. In order that a portion of the arc of radius r, subject to a uni-

formly distributed load p, be in a state of equilibrium and not undergo

bending, it is necessary and sufficient that reactions, equal to R = pr and

directed along tangents to the arc, be applied at the ends of the arc

*Shimansky, Yu. A.: "Calculation of Composite Frames for the Bull of a
Submarine", Collection BNBK (NIVK), Number 6, 1938.
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(Figure 22).

Resolving these reactions in the direction of the chord and nor-

mal to it, as shown in Figure 22, we get:

component in the direction of the chord:

Tir Pr cone -py

component in the direction normal to the chord:

-Pr sin a- P

where y - r cose and x = r cose are equal to the projections of the radius

passing through the ends of the arc on directions of the corresponding

diameter or, what amounts to the same thing, equal to the coordinates of the

end of the chord.

Thus, the magnitude of the general reaction pr of the arc in the

direction of the tangent does not depend on the length of the arc, i.e.3 on

the magnitude of the central angle corresponding to it. However, the mag-

nitudes of the components of the reaction (py and px) in the direction of
the chord and normal to it, do depend on the length of the arc, or, in other

words, on the magnitude of the central angle.

From what has been stated, it follows that any part of the arc
may be substituted by a force, equal to pr and directed along the tangent
at the point of separation, without change of the forces found previously
for the ends of the arc: pr, or py and px (Figure 23).

However, it must be taken into account that the ends of the arc
which are a part of the circle of radius r, loaded by uniform load p, must,

as the result of the application in its sections to axial forces pr, undergo

displacements in the direction of the radii equal to:*

Pr
A0 -E

and consequently, the displacements in the direction of the chord are equal
to se -d sina, where F denotes the area of the section of the arc (Figure
24). Only when such deflections occur, is it practically possible to con-

sider that the arc will not undergo bending, but only be subject to axial
forces equal to pr. If, in reality, as a result of some structural condi-
tions, the displacement of the end of the arc in the direction of the chord
proves to be equal to 41, and, as a consequence the

*Editor's Note: The following equation was badly typeset in the original

and could not be read. We have indicated by r those sym-

bols we could not read.

4-2



displacement in the direction of the radius is equal to:

I. --
sin

then the regular circular contour of the arc will be distorted; the greatest

deflection resulting from the bending will then be A, - A o . In sections of

the arc, bending moments will occur; the largest of these bending moments

at the end of the arc will be equal to:

It- pr(A, - Ao) - , Q p,

The greatest value of this moment, assuming absolute rigidity of the cross-

member (d1 = 0), is:

3. If, on a beam AB of arbitrary shape, whose length is s, a uniform-

ly distributed load p is applied, the equivalent force of this load, equal

to ps, passes through the center of the beam in a direction normal to it

(Figure 25).
The components of this load in the two mutually perpendicular di-

rections are:

X-py and Ir.f

where x and y are the projections of the beam in the given directions.
A uniformly distributed load p, acting on a beam of any shape AB,

is equivalent to the uniformly distributed load of the saie Intensity, act-
ing on an arbitrary system of intersecting beams BCDA passing through the
ends of the beam being examined (see Figure 26). Therefore, from the point
of view of statics, a uniformly distributed load, acting on a beam, can be
resolved into components of a load of the same intensity acting in any two
or more directions passing through the ends of the beam under investigation.

4. If, in a circular beam subjected to a uniform load p, a certain
portion is removed and replaced by a rigid cross-member, the forces and mo-

ments in the section of the remaining circular beam will not change, where-
by at the points of juncture to the cross-member, shear forces will be act-

ing equal pr (Figure 27). The components of these forces in the direction

of the cross-member and normal to it will be (see Paragraph 1 of the pre-
sent section):

T- P and 7- p

where x and y are coordinates of the joints

In this case, the cross-member will behave as a freely supported
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beam supported at two points under the application of a uniform load p and

axial forces equal to Y - px, where x is equal to the distance from the

center of the circumference of the beam 0 to the cross-member.

5. If the structure being examined is composed of two intersecting

circular beams and a rigid cross-member situated between the points of their

intersection (Joints), the forces acting on the cross-bar are reduced to only

axial forces, applied along the line of Juncture and equal to (Figures 28

and 29):

- p(a + at) x ,

where 001 is the distance between the centers of the circular beams.

The components of the forces in the direction normal to the line

of Juncture, X a py, mutually equilibrate each other.

Thereby, it is evident that as the center 01, passes to a point

beyond the center 0 on the side opposite the location of the cross-member,

the axial force in the cross-member will change its sign.

6. The arc of a segment of a circle, or a full circle loaded by a

uniform pressure p, may be replaced by any Jointed or hinged polygon with-

out disturbing the equilibrium of the system, whereby along the sides of this

polygon there will be acting, in addition to the pressure p, axial forces S
equal to the product of the intensity of the pressure p and the distance
from the corresponding side of the polygon to the center of the circle

(Figure 30); for example,

S -,XT a

The arc of a portion of a circle, or of a full circle, loaded by
a uniform pressure p may, without disturbing the equilibrium, be replaced
by a system of arcs of arbitrary radii inscribed within the given circle or

arc.

In this case, both in the arcs and in the cross-membersponly axial

forces will be developed and will be given, respectively, by

SjipW and 82 .pxnl

wherein r is the length of the radius of the arc and 001 is the distance

from the center of the arc to the center of the circle (Figure 31).

A uniformly distributed load acting on the above described hinged
systems, consisting of rigid Junctures, insofar as axial forced are concern-

ed, may be applied uniformly on them only if all the Joints of the hinged sys-
tem be on one circle. Since a circle may be described about any triangle,

the hinged system under investigation, having the form of any triangle, can

consequently serve to equilibrate a uniformly distributed load (F1gure 19).
7. If the beam ABC (Figures 32 and 33), having a partially circular

shape of radius r, is loaded by a uniformly distributed load p and an axial

4-4



force pr, applied to the circular end of beam A, the indicated external

forces may be reduced for any section of beam C to one concentrated force

normal to the radius through the point C and equal to P = ps, where a is the
distance from point C to the center; the point of intersection E of the di-
rection of this force with the radius has .a distance from point C equal to

d - 8(r 2 - .2)

In fact, on the basis of Paragraph 3 of the present section, a
load acting on part of the beam BC may be replaced by loads on the segments

ED and DC where BD represents the prolongation of the arc and DC is the di-

rection of the radius drawn toward point C. The load on the portion BD,
together with the load acting on the circular part of beam AB, may be re-

placed by the concentrated force pr, applied at point D, normal to the radius
(see Paragraph 2 of this section); the load on the segment DC equal to k

a r - a may be replaced by the concentrated force pk normal to the radius

and applied at the center of the portion DC.

Adding the forces pr and p(r - s) according to the rule of aua-

tion of parallel forces, we shall get a resultant force P = ps applied at

point E, whereupon we find that

EC -' - (,2 - )

The force so found P - p., equivalent to the load acting on
the beam ABC, may thereupon be reduced to any point and decomposed in

any direction. Thus, taking point C as the base point of reduction, we shall

get for the bending moment;
U-pe -pox1 (r2 _ s2) _.t (,2 _,g2)
-~ r 2e-p

and the concentrated force P - ps normal to the radius through the point C;

for the resolution of this concentrated force in any two chosen directions,

we have to resolve the segment OC = s into directions normal to those chosen,

as outlined in Paragraph 1 of this section.

14. ANALYSIS OF FRAMES CONSISTING OF INTERSECTING CIRCULAR
BEAMS AND RECTILINEAR CROSS BRACES (Figures 18 and 19)

As a peculiarity of this type of frame the clear distribution of
the functions performed by their composite members, may be mentioned i.e.

by the circular beams and straight cross braces, and, as a consequence the

absence of bending stresses in sections of these members. The circular

beams take up the external load acting on the frame and transmit it as con-

centrated shear forces to the Joints; the cross-members, located between

these Joints, act to equilibrate the concentrated forces mentioned.
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The axial force in a circular beam is:

S -pr

The axial force in the cross-member (Paragraph 5 of the preced-

ing section) is:

S-pxO

where p is the intensity of the external load; r is the radius of the circle

of the circular beam under examination; 001 is the distance from the center

of the circumference of that circular beam, which is closed by the cross-

member under investigation, to the center of the circle on which the joints

of the frame are situated.

The analysis of circular beams and cross-braces subjected to the

axial forces produced in them must be performed both with respect to strength

and stability, proceeding from the condition of equal strength. For this pur-

pose the usual formulas are used, considering the ends of the beams and

cross-braces as freely supported.

15. ANALYSIS OF FRAMES COMPOSED OF CIRCULAR BEAMS AND CROSS

BRACES OF ARBITRARY SHAPE UNDER EXTERNAL LOADING.

To frames of the type mentioned in the heading belong all vari-

eties of composite frames encountered in practice, wherein the transverse

braces serve as connections which not only equilibrate the external loading

but partially absorb it (Figures 14, 15, 16, 17).

A brace may be considered (as outlined in Section 13, Paragraph
4), for purposes of analysis, equivalent to a simply supported beam resting

on two supports subjected, in addition to the distributed load p, to a com-

pressive force acting along, a line connecting the supporting sections, equal

to px, where x is the distance from this line to the center (Figures 34 and

35, left half).

The order of further analysis of the beam is determined by its

design; the following three structural variants of such beams usually en-

countered in practice should be mentioned.

1. The beam is in the shape of a truss girder. The forces acting in

the members of the beam may be found with the aid of the usual methods used

in truss analysis.

In determining the stresses in the members, their deflection must

be considered as well as the distributed load in the span.

2. The beam is a solid web or a web with small cut outs as in Figures

14 and 17, rieht side. The forces and moments in the section of such a beam

are calculated most simply according to the procedure outlined in Section

13, Paragraph 7.



For example, let it be required to calculate the forces and mo-

ments for the section of the beam passing through point C of the loaded

edge (Figures 34, 35, 36). For this purpose, we draw a radius through

point C and mark on it a point E, at a distance from C equal to

e = V2(r 2 
- 32)

where s is the length of the portion OC.

The forces and moments in the section being examined are reduced

to a sinle force equal to P a ps, passing through the point E normal to

the radius.

The components of this force, reduced at the center of gravity of

the section, will be;

bending moment; a - p s J,

where i is the distance from the direction of the force P to the center of

gravity; axial force S n px and shearing force N a py, where x and y are the

components of the segment s in directions along and normal to the section,

(Section 13, Paragraph 1).

In Figure 35, the component of force P in the direction of the sec-

tion equals zero; in the case of the type of braced beam shown on the fig-

ure, the axial force and the bending moment for all sections of the beam

are the same.

Having found the bending moment I, the axial force S and the shear-
ing force N, acting in the section of the beam, it is possible, by the

usual formulas, to calculate the maximum stresses in the section of the

beam under investigation.

3. The beam is designed as a truss girder without cross-stays (see

Figures 15, 16, and the left halves of Figures 14 and 17). Every portion

of such a beam represents a closed frame ABCD, consisting of four members

with rigid Joints, whereby the two opposite bars of this frame BC and AD

are absolutely rigid whereas the two remaining members AB and CD have

terminal rigidity only (see Figures 37, 38, 39, 40).

The external load acting on this frame consists of the distributed

load p applied on one of the members having terminal rigidity and the forces
acting on the absolutely rigid members. The latter are equivalent to the

forces and moments in the sections of the beam which limit the segment of

it under investigation. Every one of these forces, as was shown previously,

is reduced to one concentrated force equal to P = ps, normal to the radius

drawn through joint C of the loaded member and, at a distance from this

joint equal to

e - 8a(r2 - 82)
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where s is the distance between this joint and the center of the circular

frame of radius r.

For the analysis of such a frame, we shall consider its lower

rigid member as immovable and the force P = ps, applied to the upper rigid

member, will be reduced to point C, resolvina it in the direction of the

member CD and normal to the latter.*

As a result of such a reduction, we shall get at point C:
bending moment:

9 I pe.1p(,2 _ &2) [1]

2

the force in the direction of the member CD:

so- px 6* [2]

the force in the direction normal to CD:

N-p x [31

where OF and CF are equal to the components of the segment OC = s in the di-

rection and normal to CD, respectively.

Let us take for positive directions of the external forces and

momentshN, N, So and p actin 8 on the frame, and likewise, for positive di-

rections of the initial deflection of the members, their directions shown

in Figure 39.
Let us introduce the followinS notation: 11 and 12 = the length

of members AB and CD; f, and f2 = the initial deflections of the members,

considering them as positive for the type of bending shown in Figure 39.

The magnitudes of the deflections can be measured either according to the

sketch or calculated according to the well-known expression f = 12 /8R where

I is the length of the member and R is the r-dius of curvature; a is the

angle between the members AB and CD whereupon

sin a = il/l, ; cos a = h2/11 where h, = AK and h2 = BK

In this expression, point K is the intersection of lines drawn from the

Joints A and B normal and parallel to the directions of member CD; a and b
are the lenqths of the portions CL and BL 'where L is the point of intersec-

tion of the direction of member AB with the perpendicular to tJ)is direction

*If the neutral axis of the member CD does not noticeably coincide with the

line of application of the external load p, the force P = ps must be brought

to a point lyin,T on the neutral axis of this member.
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dropped from point C. Ii, 12 are moments of inertia of the sections of mem-

bers AB and CD;

011

q -ilae+ ooke - y X. ,2
6 2

2(- b + k

Am B Ll B

S(t + 2q) cownventional BaU

T-lt+ AN + ,2So T BP

K-a+A size +ji oese +p;

L - b -A ose e + h &'no +

MI, nL, S1 are bending moment, shearing force and axial force respectively

acting in the upper section of member AB;

ft, n, S2 are bending moment, shearing force and axial force respectively

acting in the upper section of member CD.

For positive directions of forces and moments, we shall take their

directions as shown in Figure 41.

If the forces and moments acting in the upper sections of members

AB and CD are knovn, the forces and moments in the middle and lover sections

of these members can be calculated according to the following expression,

resulting directly from examination of Figure 41 (the axial forces remain

constant).

For member AB:

in the middle section:

% ,,+mI -SI ,14 -.' [4,1

in the lower section:

MIS-0, +sill *3 "1.
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For member CD:
in the middle section:

2 

(6]

in the lover section:

04 " 'a2-2 ± 1 2

0 4 - 2  TP1]

Calculation of a frame without cross-stays (diagonals) nost be
made on the basis of the following expressions, employed for determination
of the unknown forces and moments in the upper sections of members AB and
CD, and in the following order:

a) According to the diagram of the frames, the lengths of the
segments OF, 51 and s - W are found, which determine the magnitudes of the
external moments and forces, qB, N and So (according to Equations (1), (2]
and (31) and similarly, the other dimensions of the frame necessary for cal-
culation as mentioned in the notation.

b) The numerical values are calculated according to the formulas
given above, taking into account the directions (signs) of the deflections
and of the external loads acting on the frame.

c) The unknown forces and moments acting in the upper sections
of members AB and CD are calculated in first approximation, assuming n- 0,
according to the following expressions:

RI*0

1 - TIk

82 W, I: 00 6 01 1 " 8O> S~o.-0 [8]

4 2 -N -8 1 mine

0 2 - An -84 T OP
2 ms 2  

5
2 92

a W , +0[1 2 J 1 22 + S2, 2 t 'P2
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The values for the forces and moments obtained in first approximation are

written in the first colum of Table 13.
d) The correction to the first approximtion of the force n1L is

calculated according to

Ai -D (Slpl - l) [9]

and the correction for the other forces and moments is calculated according
to the expressions:

A182  418, ooe a - Ala 1 Sim

AIm - A A 1.2  - A 2 1 >2

l 'FIA 181 + L l me2 Al % + fA 1

Th. numerical values found for the corrections are written in the second

column of Table 13.
e) The second correction for the force nl is calculated accord-

ing to:

A291 "D(AtBIFt -A 1 .l) A11]

and likewise the coefficient for total correction required for the follow-
ing calculation Is given by

I 1  
[121

.The values for the corrections lbted in the second colun of
Table 13 are multiplied by the coefficient of total correctiong ; these re-

sults are tabulated in the third colum of the table.
The derived values for the forces and moments are foud to be the

result of addition of the values given in the first and third columns of the
table; these results are written in the fourth coluwn of the table.

f) The forces and moments applied in the middle and lover sec-
tions of members AD and CD are calculated according to Equations (] to (7]
and the strength of these members is checked with respect to stresses.

In carrying out the calculations, the following must be kept in
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mind.
(i) Since, in the equations given above, the external load p act-

ing along the circumference of the frame enters into the calculation as a
multiplier, it can be dropped from all intermediate computations and be re-
served merely to multiply the final result of calculation. If, in doing
so, the load p acts along the outer edge of the loaded member CD, numbers
having the multiplier p in the expressions under Equation [8) must be taken
with the lower signs* (Figure 40).

(ii) For a check of the correctness of the arithmstical computa-
tions the expression may be used:

in which the values of the forces and mw.ents, given in the final column
of Table 13, must be substituted.

(iii) In checking the strength of the sections of members AB
and CD, according to the forces and moments determined in them, the follow-
Ing standards for allowable stresses must be taken, under the condition
that the loading p corresponds to the design pressure.

The standard for the general stresses (in middle sections of the
members): -- up to the yield point of the material.

The standard for local stresses (in the end sections of the mem-
bers): for tensile stresses -- 12% of the yield limit of the ma-

terial; for compressive stresses -- 100% of the yield limit of
the material.

(iiii) For determination of the total stresses in sections of
the members, the directions (signs) of the bending moments and axial force
must be considered (in Figure 4i, the directions of these forces and mo-
ments are shown as positive).

4. The optimum design of a girder without cross-stays or diagonals.
The optimum type of girder, without cross-stays, investigated in the pre-
ceding section, must meet the condition consisting of the absence In its
members of the end bending moments m and of shearing forces n.

We shall show that, to satisfy this condition, it is necessary
and sufficient that all four Joints of each frwo of the girder lie upon
the same circle (Figure 42).

Let us examine one of the frames, for example ABCD, of such a
girder without cross-stays, shown in Figure 37. Let us apply to the edge
of the girder without loading equal and oppositely directed, distributed

*Editor's Note: Apparently, as the values concerned in Equation [8] are
provided with the ± sign, the author moans that the nega-

tive sign applies.
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loads +p and -p.

The load +p, acting over the entire circumference of the frame,

produces a compressive force pr in the member AB.

The load -p, acting on parts BN and AM, and the load +p which acts

on the segment CN and DM (Figure 37), may be replaced by loads +p acting
along the sides BC and AD.

Thus, the load acting on the frame of a girder being investigated,

is equivalent to the uniformly distributed loads +p, applied to all four
sides of the frame. If all the Joints of the frame are on one circle,

these loads are equivalent to a uniformly distributed pressure of the same

intensity acting along the circumference of the circle (Figure 42). In re-

lation to this circumference, the members of the frame appear as rigid

cross-braces, loaded only by axial forces equal to the product of the pres-

sure p and the distance to the cross-brace from the center of the circle

(Section 13, Paragraph 6).

From all that has been said, it is evident that the frame under
investigation, vhich represents a binged quadrangle Inscribed vithln the

circle, will not be distorted. In member AB, there will act a compressive
force pr, as well as a compressive force and bending moment due to the

axial force equal to ps, where s is the distance to the member from the

center of the circle. In member CD there will act a compressive force and

a bending moment due to the axial force ps, where s, is the distance of

this member from the center of the circle and bending moments due to the

application of a uniformly distributed load p.

EXAMPLES*

Example 1.

To find the forces and moments in sections of a member of a frame
without cross-stays (Figure 43), which represents a part of a composite

frame such as shown in Figure 14, according to the following data.

radius of the circumference of the frame r = 2.25 [m]

radius of the inner member R a 3.25 [m]

1- AB. 1.0(m] 12 - CD - 1.54101 A - AK o.(m]

A2 B9 1.21s,] a- CL -1.1(m] b.D-L -O.lj-

the initial deflection of the unloaded member AD.
! (1.62) 2

BF 8 x 2.25

*Editor's Note: Inasmuch as t and m are both used as symbols, the abbrevia-

tions for meter [ml and ton It] will be placed in brackets.
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similarly, for the loaded member:

(0.0925 (m]

SR 8 x 3.25

The direction of both deflections is positive. The intensity of
the load on the frame is p in [t) per running meter (the load on the member

CD is positive in'direction).

The moment of inertia of sections AB and CD are identical (I - 12).

The external loading acting on the frame is equivalent to one con-

centrated force P = ps, normal to the radius drawn from the center 0 through

C and distant from C by the quantity e = CFE W./2s (r2 - a 2) where s is the

length of the segment C, i.e. s - 1.56 [m].
Reducing this force to point C and resolving it in the direction

of and perpendicular to member CD, we get (instead of decomposition of the

force, we decompose the segment CD):

bending moment according to Equation [1]:

2 2

force in the direction of member CD according to Equation (2]:

so-Px 06-0.4P It)

force in the direction normal to member CD by Equation [2]:

N - p -CF 1.58t)

The direction of the moments and forces 9t, So, N, is positive.

Computing the numerical values of the quantities:

sinew--± . -0.605 c ,..a - 0.S15
1.62 It 1.091

.1 x 0.146 - 0.0975 2  2, .X 0.0925 - 0.015

!I - III - 0.837 Y' .1 -. 0.95?

a .I1 i1  1.02

k ty - 0.02 xmy 2 /.O.gl,

12

. b.sin a +cons •-1.04T

a
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S(1.5+ k) -0.85 B - 1.333+k 1 2 0.45

3(2 + k) 2

3 (9 +2q)
C -(2+ 3)X -4.41 D - (t+ 3) .1.12(2* + 3,7)11

- qk + AN + I'2 So -B. 2.208

K -+A sina + p2 Cosa +p1 -1.832

L- b-Acoa + 2sina +1. 0.688
D

We compute the value of the stresses in first approximation accord-

ing to Equation [8] as:
ft1 -0

S- 2203 -1.202
K 1.832

S 2 - S cos - So 1.202 x 0.815 - 0.0 4 - 0.94

n 2 - N - S1 aina - 1.58 - 1.202 x 0.605 - 0.852

M2 - An 2 - S2pU2 - B - 0.850 x 0.852 - 0.94 x 0.0615 - 0.457 - 0.210
NJ SI + 2 .11242 + S22+I i 22] _ 0.059

The values obtained will be entered in the first column of Table
14.

We compute the corrections to the first approximation by Equations

[9] and [10] as follows:

AshIN- D(Sj,& - 01) - 1.12 (1.202 x 0.0975 - 0.059) - 0.0652

A A "k A I -1.0"S x 0.0652 - 0.0245

A1 1 K 1.832

AS 2 - A1 S1 cos a - A sina - 0.0245 x 0.815 - 0.0652 x 0.605 - - 0.0195

A 1 2 -- AIS 1 nina - A~n, coea - 0.0245 x 0.605 - 0.0652 x 0.815 - - 0.068

Al1o 2 - AA 142 - AIS 1P2 - - 0.85 x 0.008 + 0.0195 x 0.0615 - - 0.0566

A 1 " P1 A1 S1 +. C[A m 2 -11 2A~n2 + 1 2AIS 2 ] - 0.975 x 0.0245

+4.41 0.0566 +2 1.55 x 0.068 - 0.0015 x 0.0195]" 0.0571
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We enter the values obtained in the second column of Table 14.

Next, we compute the second correction A2. 2 by EqUjation I'] aa

the coefficient of total correction by Equation [121:

A 2, 1 - D (AS,1 1 - Atm,) - 1.12 (0.0245 x 0.0975 - 0.0571) - - 0.0613

A1n1  . 0.0652 - 0.515

A, - A2, 0.0652 + 0.0618

Multiplying the values in the second column of Table 14, by x -

0.515, we enter the results in the third column of the table. Then, add-

ing the figures of the first and third columns, we enter the result in the

fourth column.

The degree of' accuracy found for the values of forces and moments

is checked by Equation [13]:

S1a -It - ' 2 + M - b1b - 1.215 x 1.17 - 1.815 - 0.181 + 0.0884 - 0.0886 x 0.45 - 1.5104 - 14111

Having found the forces and moments in the upper section of the

members AB and CD, we compute by Equations [4] to [7] the seresses in the

middle and lower sections of these menbers (Figure 41).

For member AB:

the forces and moments in the middle section according to Equation

[4] are:

rL, m 1 +n -Sft - 0.088 + 0.0886 x 1._.. - 1.215 x0.1461+ 2 2

- - O.062p [t-ml

%- -0 .0336 Mt

the forces and moments in the lower section are computed by Equa-

tion [51 as:

M 3 - M, + nlI - 0.088 + 0.086 x 1.62 -0.148 p ("I

A3- i - o.O836 P("I

4-16



For member CD:

the forces and moments in the middle section are computed by Equa-

tion [61 as:

1 + 2 --. + 0.98X0.925+11.552

2 2A2 - Lx-+02 f- "-1818--8172

- 0.067 r [t.]

-- 1 .o.81i 1-.. o.042 Pt

the forces and moments in the lower section are computed
by Equation [7] as:

34 -"M2  22 + 2"O.OlSO Sl 1€X1.55+_ix1.552._0.115,tp..,)

n4 - *2 - 12 - 0.817 - 1.55 -0.788 p [t]

To obtain the numerical values of forces and moments, the intensi-
ty of the design load acting on the frame must be substituted for the symbol

p.
For example, with a design load equal to 9 atm (design depth 90

[m]), and the distances between the frames equal to 0.5 [m], the intensity
of the design load p a 0.5 x 90 - 145 [t) per running meter.

The axial tensile force in member CD is

S2 - O.Up -0.93 x 45 - 41.8 [t]

The bending moment in the lower section of member CD is :

0 4 - 0.115 x 45 - 5.18 P-=]

The shearing force in the lower section of member CD is:

%4 - o.T3, -oJ3 x 45 - U 1t]

The maximum tensile stress in the lower section of seuber CD (at
the IS edge of the section) is:

2 + 4
F W
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where F is the area of the section and W is the moment of resistance of the

section with respect to the inner edge.

Example 2.

To find the forces and moments in the sections of members of a

frame without cross-stays (Figure 4h), representing part of a composite

frame as shown in Figure 14.

radius of the circumference of the frame, r-2.25 [m]
radius of the inner member, R - 2.25 [m]

It-AB -1.69 [m 12 -CD-1.69 [im] , -AK"- 1.19 [m]

A2 -BK 1.21 [m] a -CL 0.9 [m] b - BL - 0.875 [m]

S- OC -1.69 [m] OF 0 CF - 1.69 [m]

initial deflection of members AB and CD:
j 2  1.692

" =  1.925 0.159 [m]
Sr 8 x2.25
2 1.692 = 0.159 [m]
8R = 8 x2.25

the direction of both deflections is positive;

the intensity of the load acting on the frame is p ft-mI (the di-

rection of the load is positive);

the moments of inertia of the sections of the members are identi-
cal, Ii - I?.

We determine the external moments and forces reduced to joint C

by Equations [i] to [31

I .p(f2 _# 2) __1p(2.252 - 1.692) 1.103p [t-m]
2 2

N-pxCF-1.69p [t]

so - P x OF - 0

The moments and forces found have positive direction.

We next compute the numerical values for the quantities-

sin 1 M.1 6

At~ ~ ~ -- -O01!  1.69 i s 1.0

- X 0.159 0.106 -2 f 2  x 0.159 -0.106
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hi 119£2 . 1.69_1
t - - 1.322 y .. 69

a 0.9 1.69

k = ty 1.322 x Y2 2_
'1

,.sina + cosa -0"375 x 0.704 + 0.716 - 1.0092
a 0.9

2 (1.5 + k) 2 (1.5 + 1.322) .956
3(2+-k) 2 3(2+ 1.322)

1.333 + k 1 2 1.333 + 1.322 1.692 0.572

4(2+k) 4(2 + 1.322)

C - (2t + 3,I)X - (2 x 1.322 + 3 x 1.009) x 1 = 5.772

3(t + 2 q) 3(1.322 + 2 x 1.009) . 1.027
(2t + 3)l1 (2 x 1.322 + 3 x 1.009) 1.69

T - + + AN + #2So - B - 1.103 + 0.956 x 1.69 - 0.572 - 2.146 *

K- a + A sina + u cosa + ui 0.9 + 0.956 x 0.704 + 0.106 x 0,716 + 0.106 -1.7549

L- b-A ooaa sina + -0.375-0.956x0.716+0.106x0.704++ 1 -0.7386D 1.027

W& compute, the mqnnitudes of the forces and moments in first ap-
rorxliA'don ,'ly I quition [RJ ns

n1 -0

S1 _. 2.146 - 1.223
K 1.755

S2 - S 1 cosa -S O -1.223 x0.716-0-0.874

Otdltor's TNote. In tt-, nr-in-.2, one term of the numerical computation was

• .pr ren, iy oitt1d



N - N- S si a - 1.69 - 1.228 x 0.704 - 0.828

M2 M A4 2 - 8 2 02 - 8 - 0.956 x 0.828 - 0.876 x 0.106 - 0.572 - 0.1272

a 1S111 + C [ 2 +3 2 X2 + S2 0'2 + 1 2 - 1.228 x 0.106 + 5.771 0.1272 - x 1.69 x 0.828

+ 0.876 x 0.106 + 0.25 x 1.692] - 0.1418

The values obtained are entered into the first column of Table

15. The corrections are then computed by Equations [9] and [101:

Ali - D (Slit, - w,) - 1.027 (1.228 x 0.106 - 0.1418) - - 0.01248

AiSi - L Ala i - 0.7386 (-0.01248) - - 0.005231 1.7549

A s 2 -A s coge - Al i sine -0.00698 x 0,T16 + 0.01248 x 0.704 -0.005015

AI0 2 - 0.00523 x 0.704 + 0.01243 x 0.716 - 0.01258

Aim 2 - AA1 s2 - p2A1 S2 - 0.9560 x 0.01258 - 0.106 x 0.006045 - 0.01150

Aim I -PIA 1 SI +C [ M 2 - 2 2 A1.2 +K2 A1S 2 .0.106x0.00598+5.T71[.01150 -x1.49

x 0.01258 + 0.106 x 0.005015] - - 0.01238

The values obtained are entered in the second colum of Table 15;
the second cTorrectio A2nl in calculated by Equation [1] and the coefficient
of total corrections a by Equation [12],

A2 1 " 1.02T (- 0.00523 x 0.106 + 0.01288) - 0.01267

- 0.01248 - 0.495
- 0.01943 - 0.01267

Thereupon, the values in the second colum are multiplied by #
- 0.49 5 and the results are entered into the third column of Table 15.

Thereupon, we find all the forces and moments indicated in Colum IV of the
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table.

The degree of correctness of the values found for the forces and

moments is checked by Equation [13], namely:

Sa -II - M2 + M I - %Ib - 1.22 x 0.9 - 1.108 - 0.183 + 0.185 + 0.00616 x 0.375 - 1.287 - 1.2&6

Having found the forces and moments in the upper sections of mem-

bers AB and CD, we compute the forces and moments in the middle and lower

sections of these members by Equations [41 to [7]:
For member AB:

the forces and moments in the middle section, by Equation [4] are:

-0.18542 - 0.00616 !R 1.22041 x 0.159 0 0.064, P [9Ml

asI 1 --0.0062, [

the forces and moments in the lower section by Equation [5] are:

3 -0.13542 - 0.00616 x 1.09 - 0.125 p (m]

*I 1 hIm0.0062 P(S

For member CD:

the forces and moments in the middle section by Equation [6] are:

- 0.1829 - 0.8842 1.*69 + 0.8786 x 0.159 + 1 - - 0.075 Ltm]
2 8

0 '-.63 - A --- 0.011 p [t]
2

the forces and moments in the lower section, by Equation [7] are:

No "0.138 - 0.834 X 1.69 + 2 - 0.158 P Ct-m]

4n*2 " 12 - 0.884 - 1.09 - -0.856 p [t]

To find the numerical values for the forces and moments, the in-

tensity of the design load acting on the frame must be substituted for p.

Example 3.

To find the forces and moments in the sections of the members of

a frame without cross-stays (Figure 45), as shown in Figure 31, represent-

ing part of a composite frame shown in Figure 17.

radius of the circumference of the frame, r - 2.68 [m]
radius of the loaded member CD, R = 2.73 [ml
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S- AB-0.6 [M] 1 " " 1.01 [] A1 - 0.04 [0)

h2 - -. 6 [). ( - CL - 1.24 [m] b - B-Z 0.275 [a]

the initial deflection of member AB is:

f, " Lg 2 = 0.62 - 0.0168 [M]

8.' 8 x2.68

the same magnitude for member CD is:

f2 _L--- 1.012 -0.0467 [in
SR 8 x 2.78

the direction of the deflection f, is negative, therefore, the

minus sign must be used.

The intensity of the load acting on the frame is p ft m-1] (the
direction of the load on member CD is negative; therefore, according to
what was said in Section 15, Paragraph 3(i), the minus sign must be used).

The external loading acting on the frame is equivalent to one con-
centrated force P = ps, normal to the radius drawn from the center 0 to the

point C and distant from C by
CE - (, _ 2)

2

where s.is equal to the length of the segment C (s - 3.965 [m]).
Reducing this force to point C and resolving it in the direction

of the member CD and perpendicular to it, we get (instead of the decomposi-
tion of force P, we resolve the segment CD):

the bending moment by Equation (1] is:

9. pe. p (2 _ 82). 4.2Tp C-mJ

the force in the direction of member CD by Equation (2] is:

s o - o7 x p - 3.95 p

the force normal to the member by Equation [31 is:

N - CF x p - 0.238 p ()

as the force N has negative direction, it must be provided with
the minus sign.
We compute the numerical values of the quantities:
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sina - 010 0_ , 0.0667 cosa .----.1
11 0.0 11 0.6

- - - 0.667 x 0.0168 - - 0.0112

A2 = 2/3 f2 = 0.667 x 0.0467 = 0.0312

t o l - 040.0322
a 1.24

y. - .101 O 1.68
11 0.6

k = ty = 0.0542

X = y 2
11/1 2 =2.33

q -- sina + cosa -0.222 x0.066T + 1-0.0148 + 1-1.0148

a

A 2(1.5+ k) 1 2 2(1.5 + 0.0542)1.01-0.505
3(2+k) 2 3(2+0.0542)

B . 1.333 + k 2 1.387 1.02 - 0.172
4 (2 + k) 2 4 (2 + 0.0542)

C - (2t + 3i) X - (0.0644 + 3 x 1.0148) 2.83 - 3.1088 x 2,83 - 8.81

D 3 (t + 2 q) 3 (0.0522 + 2.0296)- - 3.32
(2t + 3q/) 1 3.1088 x 0.60

r'- 9n + AN + + I! - 4.27 - 0.238 x 0.505 + 0.0312 x 8.95 + 0.172 - 4.445

K -a+A sine +1P2 cosa +h -1.2932

L - b- A cosa + 2 sina + -- 0.0691
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By Equation [8], we compute the values of the momnt@ and forces:

4 -0
s,. r. 4,44 - .44

K 1.2932

S 2 -8 1 coae -S O-8.44x1-8.95 - -0.51

4 2 - N - S sine - - 0.288 - 8.44 x 0.0607 - - 0.468

a2 - AN2 - 82P2 + B - - 0.505 x 0.468 + 0.51 x 0.0819 + 0.172- - 0.046

- 8.44 x 0.0112 + 8.81 [ 0.048 + 0.067 x 1.01 x 0.468 - 0.51 x 0.0819 - 1902] -0.0799L4j

We compute the corrections to the first approximation by Equations
(91 and (10] as:

Alai - 8.2 (-8.44 x 0.0112 + 0.729) - 0.114

A181 .i A - 20 o(.114)-0.00608
K 12982

AlS 2 - 0.00608 - 0.114 x 0.0667 - - 0.00152

A 142 - - 0.00608 xO.T667 -0.114 - - 0.1140

AIM2 - - 0.505 x 0.114 + 0.00152 x 0.0812 - - 0.0515

Ala i - - 0.0112 X 0.00608 + 8.81(-0.0575 + 0.0767 -0) - 0.160

We compute the second correction for the stress n1 and the total
correction as:

A ft - 8.$8 (-0.00608 x 0.0119 - 0.169) - -0.569

a 0.114 0.114 - 0.169
0.114 + 0.562 0.676

All the given calculations, as in the proceeding examples, are
tabulated In Table 16.

The degree of accuracy is checked by Equation (13]:

*Editor's Note: Should be -0.1187.

4-24



8SO -9n- 02 + Nt, -" sb - 0.058 -0.049

The forces and moments in the central and lover sections of the
members are computed by Equations [4] to [71.

16. DERIVATION OF EXPRESSIONS FOR THE FORCES AND M1MENTS IN THE
MEMBERS OF A FRAME WITHOUT CROSS-STAYS (Figure 39).

The lower rigid member of the frame AD will be considered immovable
and all the external forces acting on the upper rigid member BC Vill be re-
duced to the upper joint C of the loaded member CD, having decomposed the
concentrated force in the direction of this member and normal to It.

The following notation will be used:
9ft is the external bending moment acting on member BC;

So is the force in the direction of member CD;
N is the force in the direction normal to CD;
p is the intensity of the uniformly distributed load act-

ing on CD;

ml, n1, S are, respectively, the bending moment, resultant force

and axial force acting in the upper section of member
AB;

m2, n2 , S2 are the same for the upper section of member CD.
For positive directions offt, So, N and p, we shall take their

directions as shown in Figure 39, and, for the positive directions of the
moments and forces ml, n, and S, and for i2 , n2 , S2, those indicated in
Figure 4i.

The remaining conventional symbols and relations, entering in fur-
ther expressions correspond completely to those adopted in Section 15, Para-
graph 3, for investigation of analysis of girders without cross-stays.

The frame without cross-stays under investigation, contains six
unknown forces and moents:S 1, S2 , m1 , n, n1, n2 , and consequently repre-
sents a statically indeterminate system with three unknowns.

Projecting all the forces acting on member BC in the direction of
member CD and the direction normal to it, and setting up the moment equa-
tion of all forces reduced to point C (Figure 46), the following three rela-
tionships between these forces may be written:

8 1 -. ('94+0 2 -0 1" + 4s1 b)
a

S2 =S 1 ooe -S o -", sim [21
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112 -N-S 1 sina -n1 coon [3]

The remaining three relationships necessary for determination of

all the unknown forces and moments will be found by application of the prin--

ciple of least work, i.e. equating to zero the derivatives of the potential

energy of the system with respect to each of the three redundant unknowns.

As redundant quantities, we shall take the moments ml, mg and the

force nj. Directly from examination of Figure 41 the following expressions

for the bending moments in AB and CD can be written -- assuming their initial

shape a sine curve, i.e. according to:

V-f &in we

where f is the maximum deflection at the middle of the member and I is its

length.

For member AB:
V.

N -u a - Sf, in"

For member CD:
fsp2

M~s'm2n~s + 2/ 3 an" -- + 2

12

The equations resulting from the principle of least work are:

11 12

I ,., _I 10

61 £2

aV 1 M. '-" da + IX "MIX do 0 (b

av IM 2 N
I N- xdo e I NI ~- 1 d.o c)1 W 12
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In evaluating the derivatives from the expressions for the bend-
ing moments with respect to the redundant unknowns m, nl and f, it Is ex-

pedient to make an assumption which simplifies all the subsequent calcula-
tions, setting the derivatives of the axial forces S1 and S2 equal to 0; it
is easy to see that such a simplifying assumption is equivalent to assuming
that the displacements of the upper ends of members AB and CD, produced by

forces S, and S2 and by an initial bending in the members, are negligibly

small in comparison with the displacements caused by the other stresses;

consequently the less the curvature of AB and CD the more this assumption

approximates reality.

Using the assumption made, the expressions for the derivatives en-

tering into Equations (a], fb] and (c] may be stated as follows:

"m a O10

aN... OMs.1+ sina._a 1 + coo a 1 + _.~~ an (a +oa) mg

2 as2  a al1 I

Substituting the values of the derivatives in Equation [a] and
carrying out the integration, this equation will become:*

?.{mi1  2~ii1 [0.L2~ L -% 2 + S2' f2 3 21 2 33!

factoring out 11 and 12 and substituting the conventional symbols, we get:

*In the expressions for the integrals sin = .- and z sin -w d -

v have taken ir. 3, which is equivalent to assuming that the initial de-
flection of the member approaches more closely a circular arc.
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I t+ x t  -1 i-  it 1- + S 2 A 2  + - 22 -0 (d ]*a + III I - S1I~- t~ 2- u 2L2 8$4 ) d

Substituting the values of the derivatives in Equations [b] and

[c], Just as in the foregoing, these equations become:

i2(1 + 0.5 k) -un 212 (0.5 + 1k)+ S2 12 (i+0.k)+0+ 0.5 Ok)O - (f]

Solving Equation [f] with respect to m2 and introducing the con-

ventional notation adopted, we shall have:

m2 -An 2 - S2#2 - Bp [4]

Multiplying Equation [d] by 4/3 and subtracting it from Equation
[e], we get:

-!) +.Is + 2 It+ x- 2(_ Z
at till.. 2 3 Vam . 3.~~ -~-~u..

31 (F 2~ 3J' 2A 3

+s20'2( i + y) + (itg + V) x3

Solving the last equation with respect to *I and introducing the
conventional notation adopted, we get:

M 1-st1 + C [ 2 - 2 12n2 + S2/ 2 + 2 ]]
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Multiplying Equation [d] by 24/t and adding it to Equation [e1,
ye get : mw (2t 2 +) +ni,(-! + ) -S,,,, (2-2 +10).

Solving this equation for n1 and introducing the conventional no-

tation adopted, we have:

n, = D (S 11 - ,n). [6]

The Equations ( 4 ], [5] and (6] thus found, together with Equations

(1], (2] and [3], obtained from the conditions of statics, give all six con-
ditions required for determining all the unknown forces and moments in a

frame without cross-stays.

The computation of these forces and moments for a given case may

be made most conveniently by the following method.

Using Equations (2] to [6], the moments m, and ft will be express-

ed by the force nj and substituted in Equation (1] for Si; solving the equa-

tion thus obtained for S1 , we shall find:

T L7]

where

T - m + AN + A2 SO T Bp,

Kf-a+ Asin a +112 COs a +111,
1

L -b-Acosa + 112 sin a + -

Setting nj - 0 in first approximation, we can calculate, for the
first approximation, the forces and moments according to Equations [7], and

[21 to (51.
It is Judicious to carry out all the calculations in a table, sim-

ilar to Table 13 (Section 15). For this purpose, the forces and moments

found in the first approximation are entered in Colum I of the table.

Thereupon, we compute the correction to the first approximation
for n, by Equation (6], i.e. Alni a D(Sii - m). Further, we compute the
corrections for the first approximation for the other forces and moments,

as determined by correction Aln1 using the following expressions which re-

sult directly from Equations (71, and [21 to [5]:
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L
AIS I = - A~ns

AiS 2 = Al i cos a - A1 n, sin a

Ain 2 - AS, sin a - A1 n, cos a [8]

A1m2 = AA 1n 2 - AIS 1A2

Ai m1 = A1AIS 1 + [ Aim 2 - l 2 A1 n2 + A2 AiS 2 ]

The corrections obtained are entered in Column II of the table.
Next, we calculate the following correction for the force ni, re-

sulting directly from Equation [6], i.e.

A2n, - D (AISIA1 - A1 m). [9]

Making the computations of the subsequent corrections for the de-
sired forces and moments, we could finally find them with the necessary de-
gree of accuracy. However, this objective can be attained more quickly and
with satisfactory accuracy by using a rectilinear interpolation for finding
the values of the forces and moments corresponding to a zero value of the
correction for the force n1 .

It is easy to show that the total corrections for the first approx-
imation (i.e. with respect to Column I of the table) may be found by multi-
plying the values in Column II of the table by a common multiplier equal to

Ain 1
-Ain, _ A 2n, [10]

Entering the results of this multiplication in Column III of the

table, and adding them to the values of I and III, we shall get in Column
IV the desired values for all the forces and moments.
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TABLE 13

I II III IV
Stresses

and By By

Moments Equation (8) Equations (9) & (10) s II 1 + III

n0 An, pAn 1  0 + pAn,

S2

n2

TABLE 14

I II III IV

Stresses 1.y BY
and + III

Moments Equation (8) Equations (9) & (10)

ni  0.0652 0.0336 0.0336

S1  1.202 0.0245 0.0126 1.215

S2  0.940 0.0195 -0.0101 0.930

0.852 0.0680 -0.0350 0.817

M2  0.210 0.0566 -0.0292 D.181

rn 0.059 0.0571 0.0294 0.088
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TABLE 15

II III IV

Stresses By By

and Equation (8) Equations (9) & (10) II I+ IIIMments

M e - -0.01243 -0.00616 -0.00616

1.223 -0.00523 -0.00259 -1.22041

S2  0.876 0.00501 -0.00246 0.87848
n2 0.828 0.01258 0.00617 0.83417

m2  0.1272 0.01150 0.00570 0.13290

?1  0.1418 -0.01288 -0.00638 0.13542

TABLE 16

I II III IV
Stresses By By

and Equation (8) Fquations (9) & (10) p . II I + III
Moments

nl 0 0.114 0.0193 0.019

Si  3.44 0.00608 0.0011 3.441
S2  -0.51 -0.00152 -0.0003 -0.510

-0.468 -0.114 -0.0197 -0.488

-0.048 -0.0575 -0.0099 -0.058

-0.0729 0. 169 0.0292 -0.043
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CHAr-TEB V

STRENGTH ANALYSIS OF BULKHEADS

17. VARIOUS TYPES OF BULKHEADS

1. Submarine bulkheads may be divided into the following types accord-

ing to their purpose and the strength requirements corresponding to this pur-

pose.

(a) Terminal bulkheads, i.e. bulkheads limiting the pressure hull

of submarines. These bulkheads must have the same strength as the pressure

hull. Therefore, their strength must be calculated for the design depth of

submergence, determined by Equation [9), Section 3, Part 1, permitting at

such pressure the increase of tensile stresses in them to a magnitude of

25% above the yield point. The compressive stress must not exceed a magni-

tude corresponding to the loss of general and local stability of connections

of the bulkhead.

(b) Bulkheads bounding the heavy-duty tanks of the hull (high-

speed diving tanks, fuel and ballast tanks, located within the pressure

hull* etc.). Bulkheads of this type must withstand the same pressure as

the entire pressure hull, in addition to the possibility of a certain pres-

sure increase when blowing down the tanks by high pressure compressed air

at the limit depth of submersion.

(c) Light water-tight bulkheads within the pressure hull, designed

to prevent the submarine from sinking in case of damage to the pressure hull
when surfaced. The strength of such bulkheads must be calculated for the

pressure of a column of water higher than the upper edge of the bulkhead

for a number of the order of 5 meters, vith allowable stresses equal to those
usually taken for calculation of the strength of emergency bulkheads of sur-

face vessels.

(d) Heavy-duty bulkheads within the pressure hull, designed not

only to prevent the submarine from sinking when damaged during surface nav-

igation, but also to produce water-tight compartments within the pressure
hull which will stand up at great depths of submersion. At the design pres-

sure, which is fixed by the structural specifications for submarine construc-

tion, the total stresses in the plates of the bulkhead plating must not ex-

ceed the yield point of the plating material and in the joints of the

structure 80% of the yield point of the material.

*Editor's Note: The description of submarines contain ng inboard ballast,

trim and diving tanks appears to refer to the type of sub-

marines formerly built by the French and British Navies,

rather than those built by the German and U.S. Navies where

the ballast-fuel tanks were all situated in the outer hull.
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(e) Water-tight bulkheads of the outer hull (outside ballast
and fuel tanks, etc.). The design load for such bulkheads, must be taken
as the greatest pressure exerted on the bulkhead produced under operating
conditions of the submarine. The allowable stresses in the bulkhead con-
nections must be determined on the basis of the character of the applied

load in conformity with the usual standards for hull construction of
surface vessels.

The rules given above for strength analysis of bulkheads, apply
not only to bulkheads but also to the calculation of other partitions which

bound the solid or light tanks of submarine hulls. When specifying stan-

dards of allowable stresses for the plating and construction of such parti-
tions, the character of the load acting on them must be considered. There-
by, it must be borne in mind that, in the partitions which can repeatedly

be subjected to pressure from opposite sides, the stresses in the plating
and even more so, in the connections of the elements of the partition, must
not exceed the yield point of the material.

2. Submarine bulkheads may be divided into the following types accord-

ing to their design.
(a) Flat bulkheads. The methods of strength analysis of such

bulkheads does not differ essentially from the one used in the analysis of
ordinary emergency bulkheads of surface vessels. The most advantageous

system of assembly of flat bulkheads is determined by local installation
conditions. The foregoing depends chiefly on the design of their support-

ing contour and on the possibility of using the connections of the hull ad-
joining them for strengthening of the bulkhead.*

When a light platform is used as a supporting structure for the

perpendicular girders of the bulkhead assembly, appropriate local rigidity

of such a platform must be guaranteed, to avoid buckling at the floor of

the platform in the region where the bulkhead abuts. To strengthen flat
end bulkheads, they may be jointed to the torpedo tubes. For this purpose,

the torpedo tubes must be securely attached to those parts of the light hull
of the submarine located ahead of these bulkheads.

(b) Cylindrical bulkheads. These bulkheads are formed by the lon-
gitudinal walls of the wing or bottom tanks of the hull, and are designed
with a cylindrical curvature. The transverse structure of such bulkheads

appears as a portion of the composite frames of the hull. The strength of
the plating of cylindrical bulkheads must be analyzed relative to stresses
and also with respect to stability as a cylindrical shell with corresponding

radius of curvature; thereby, the conclusions drawn from investigation of

the strength of the plating of the solid hull must be taken into account.

*Editor's Note: The author probably has in mind stiffening the bulkhead by

securing it to hull flanges, etc.



(c) Spherical bulkheads.* The circular shape of the supporting

contour of transverse bulkheads installed in submarines permits designing

them spherically.

In the following, a practical method of analysis of spherical

bulkheads is outlined.

18. ADVANTAGES AND DISADVANTAGES OF SPBERICAL BULKHA.

Due to the peculiar (circular) shape of the supporting contour

of the pressure hull bulkheads of submarines, and also, owing to the com-

paratively large pressures which they must withstand, it appears advan-

tageous to design them in spherical shape. As a result, they develop fun-

damentally only stresses which occur in a flexible membrane. Let us examine
the direct advantages and disadvantages of such bulkheads, to determine the

degree of expediency of their use -- depending on the conditions in each

particular case.

1. From the point of view of economy of weight, a spherical bulkhead

is notably more advantageous than a flat bulkhead. This appears to follow

from the fact that in the connections of a flat transverse bulkhead, which

are under bending, the stresses are distributed non-uniformly and conse-

quently the material of these connections is exploited less effectively

than in a spherical bulkhead, where the stresses over its entire area and

through its thickness are practically the same.

From the structural and design point of view, spherical or dish-
ed bulkheads are advantageous because of the absence of stiffeners. The

absence of such ribs eliminates significant construction and fabrication

difficulties connected with their installation and facilitates making the bulk-
heads water-tight, especially in regions adjacent to the hull plating. How-

ever, production advantages of spherical bulkheads can be achieved only by

proven mass-production methods, which require special and cumbersome equip-

ment.

The presence of the platform of side or bottom tanks intersecting
the bulkhead or abutting on it in the region of installation of the bulk-

head, necessitates changing its true circular supportIng shape. This, in
turn, has an adverse effect on the performance of spherical bulkheads of

the pure design. In such cases, the advantages of spherical bulkheads can-

not be fully utilized; therefore, the degree of expediency of the applica-
tion of spherical bulkheads as compared to flat ones depends on the condi-

tions prevailing for each particular case.

2. As an inherent defect of spherical bulkheads may be mentioned the

*Editor's Note: By spherical bulkheads, the Russians apparently mean "dish-

ed" structures.
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very unequal resistance to water pressures on the opposite sides of the bulk-

head. The resistance of a spherical bulkhead to the pressure of water on

its convex side is greatly reduced since it is limited by the-limit load,

corresponding to the moment of loss of stability of the bulkhead, i.e. to

the inception of bending in the opposite direction. This defect has no sub-

stantial significance only for such bulkheads designed to resist the water

pressure only on one side and thus guarantee the safety of the vessel, such

as the bulkheads which seal off the central control station compartment.

Use of pure spherical bulkheads for other submarine hull compartments is

somewhat detrimental to the safety of the vessel; however, it is generally

practiced, but is not to be recommended. In such cases, spherical bulkheads

must be strengthened additionally by a system of light stiffeners to in-

crease the rigidity; these stiffeners are to be mounted on the concave side.

Thus, with only a small increase in the weight of the bulkhead structure,

a significant increase in its stability is obtained, i.e. of its resistance

to the water pressure on its convex side.

19. PERFORMANCE CHARACTEISTICS OF A SPHERICAL BUIAD.

1. From the point of view of structural mechanics, a spherical bulk-
head represents a thin shell, having the shape of a spherical segment, whose

supporting edge is connected with a cylindrical shell which represents the
hull plating of the submarine. The external load on this system consists

of the water pressure acting on both of the aforementioned shells. Figure
47, a and b, shows the water pressure distribution during testing of the

bulkhead strength (on the ship), while Figure 47, c and d, give the pressure

distribution on the bulkhead for emergency operating conditions. It is easy

to see that pressures for the cases shown in Figure 47, b and c, are less

favorable than those shown in Figure 47, a and d. Similarly, it is evi-

dent that the difference between the water pressure on the convex and the

concave surfaces of the bulkhead consists only in the reversal of the di-

rection of the load acting; therefore, in both the foregoing instances of

hydraulic loading, all the internal forces and moments, stresses and dis-

placements will be identical in magnitude but opposite in sign.

The difference between the response of the bulkhead under a hy-

draulic pressure on the concave or convex side will consist in the fact

that in the second case its useful performance may be disrupted as the re-

sult of loss of stability at a water pressure far below that which the bulk-

head can withstand in the first case. Hence, it follows that the strength

of a spherical bulkhead must be calculated with respect to stresses, for
the case, of pressure acting on the concave side, under damage conditions
(Figure 47 c), and for stability under the conditions shown for the dock-

yard tests (Figure 47 b).
2. The performance characteristics of a spherical bulkhead depend on

the design of its connection to the hull plating, that is on the conditions
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relative to the fastening of its supporting edge, as well as relative to the

rotation angles and translational displacements in the plane of the support-

ing rim or edge.
Of the three reactions of the supporting edge shown in Figure 48,

reactive moment 94, transverse reaction H and longitudinal reaction T, only
the latter appears in statically determinable and equal to

The magnitude of the reactive moment and of the transverse reac-

tion depends on the degree of rigidity of the structure at the point where

the spherical bulkhead abuts on the hull plating. The magnitude of these

reactions may vary within limits ranging from zero to a certain maximum

value corresponding to an absolutely rigid connection of the supporting

edge, at which corresponding displacements of the supporting edge are absent.

The reactive (supporting) moment 9n produces bending of the panel

of the bulkhead in the region adjacent to the supporting rim. As theoreti-

cal investigations have shown, this bending is of a wave-like character and

very quickly damps out as the distance from the supporting edge increases.

Taking this into account, the stresses corresponding to the bending in bulk-

head pilnels may be considered as purely local stresses, which do not affect

the strength of the bulkhead, subjected only to loads of purely sporadic

type. This circumstance permits us to simplify significantly the strength
analysis of a bulkhead, by assuming in all cases that its edges are simply

supported, despite the fact that in reality they will be clamped to a great-

er or lesser extent.

The transverse reactive stresses E, acting along the circumference

of the supporting bulkhead, reveal a more substantial influence on its per-

formance characteristics. For a visual presentation of this effect, we

shall first examine the performance of the bulkhead in the absence of the

transverse reaction E along its supporting contour, i.e. assuming that its

supporting contour is free to move in its plane. In Figure 48, the broken

line depicts the unloaded arc section of the bulkhead and the solid line

shows the same section under loading by a uniformly distributed internal

pressure. Under the action of the load, the plating of the bulkhead bulges,
whereupon in the middle region of the bulkhead, tensile stresses develop

in the plating, which, acting together with the longitudinal reactions T,
compress the region of the bulkhead adjacent to its supporting contour. As
a result, the radius of the supporting contour r diminishes and in the plat-

ing adjacent to the supporting contour compressive stresses arise equal to

ZAr/r, whereA r is the decrease of the radius of the supporting contour.
The compressive stresses may attain a magnitude at which the plating loses

its stability and begins to buckle in the region of the supporting contour;
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thereafter, this region ceases to perform its duty of a thrust member or
"tie-bar" for the middle region of the bulkhead.

The longitudinal reaction T, in addition to its contribution to
the compression of the supporting contour of the bulkhead mentioned above,
also produces bending of the bulkhead which attains its greatest value close
to the supporting edge and which quickly fades out as the distance from the
edge increases.

If the supporting edge is strengthened by a reinforcing ring, or
if it is fastened to such a ring (Figure 49), its displacement in the plane
of the supporting contour will be made more difficult. As a result, the
displacementA r, and consequently the stresses corresponding to it, diminish
accordingly due to the occurrence in this case of transverse reactions which
elongate the bulkhead in the plane of its supporting contour. Thus, the
supporting ring serves as a thrust member for the bulkhead which increases

its inherent thrust resistance* and, by producing transverse tensile re-
actions, decreases the compressive forces and stresses in the vicinity of
the supporting contour of the bulkhead while not causing a noticeable
effect on the magnitude of the tensile forces and stresses in its central
.region.

The greater the area of the section of the supporting ring, or
stated otherwise the greater the thrust resistance of the spherical bulk-
head, the closer will such a bulkhead approximate a closed spherical shell
subject to internal pressure.

Nowever, even in the limiting case, in complete absence of dis-
placements of the supporting edge of the bulkhead, full similarity between
the performeance characteristics of spherical bulkheads and spherical shells
will not be attained. In the limiting case, the stresses in the meridional
sections of the supporting edge of the bulkhead will be absent, while, under
the operating conditions of a spherical shell, they should be those as in
any section of the central region of the bulkhead. Stresses in the conical
sections of spherical bulkheads close to the supporting contour, which are
always tensile stresses, increase with the increase of the thrust of the
bulkhead. In the limiting case, they approximate closely the stresses in
the conical sections of the central region of spherical bulkheads, i.e.,
they approximate the stresses corresponding to the operating conditions of
a closed spherical shell. On the basis of what has been said, it is possi-
ble to conclude that the expediency of increasing the area of the section

of the supporting ring (thrust) is subject to a certain limit determined
by the identity of the material properties composing its supporting edge

In conical and In meridional sections.

*Editor's Note: The Russian here uses the term "self-thrust" or, "automatic

thrust", which appears to be merely an augmentation of the
natural thrust before addition of this strengthening ring.
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20. STRESS ANALYSIS OF SPHERICAL BULKHEADS

1. The analysis of spherical bulkheads with respect to stresses is re-

duced to the investigation of the deformation of a thin shell, having the

shape of a spherical segment and loaded by a given internal pressure q and

unknown trapsverse reactions H, distributed uniformly along the periphery

of the supporting contour of the shell. The magnitude of the reactions must

be determined from the condition that the displacements of the supporting

contour of the shell must equal the displacements of the supporting ring

under the same but oppositely directed reactions (Figure 48).

If the spherical segment being examined is part of a closed spher-

ical shell, the transverse reactive forces on the supporting contour He, the

displacements of the supporting contourA r and the stresses in any section

of the shell e, would be determined, respectively, by the following expres-
sions (Figure 50):

Ho ILICos 00

qR qwH 2  qR
Ar- r; o

2tE R

wherein R is the radius of the spherical shell;# Ois half the central angle

limiting the spherical segment; r is' the radius of the supporting contour;

t is the thickness of the shell.

If, on the deformation of the spherical segment, we superimpose

the deformation found in the segment due to the application of the trans-

verse forces alone, equal to Ho - H and applied to the supporting edge as

shown in Figure 51 a, then, as a result, the deformation of the spherical

segment under the action of a load corresponding to Figure 51 b which is

of interest here, will be obtained.

Equating the displacement of the supporting contour for this de-

formation to the displacement of the supporting ring, i.e. tothe quantity,

A,-AM2 iR2  q$0
EF EF

where F is the area of the section of the ring, we shall get a relation

from which the unknown transverse reaction H can be found.

Thus, the solution to the problem being considered is reduced to

the investigation of the deformation of a spherical segment, loaded only by

transverse forces, uniformly distributed along its edge. The solution to

this problem can be obtained easily by using the appropriate results of the

approximate theory of the deformation of a spherical shell. Given below are
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the expressions, obtained by the method indicated, for computation of the

design stresses in a spherical bulkhead, assuming its edge to be freely

supported.*

2. As design stresses in a spherical bulkhead, we must take the larg-

est uniformly distributed stresses in meridional and conic sections as de-

ternined by the following expressions:

stresses in the meridional and conic sections outside the region

of the supporting contour:

qtfR 2  qR
a1 2vRt 2t

stresses in the conic sections within che region of the supporting

contour:

stresses in the meridional sections within the region of the sup-

porting contour:

03- 24oS + F [ ]

+ A
F

reduced working stress outside the region of the supporting con-

tour:

a i n 0~ 1 0 _ ) -O .7 0 1[ 4

reduced stress in the conic sections within the region of the sup-

porting contour:

-2np 0 2 - [ 5)

reduced stress in the meridional sections of the supporting con-

tour:

[6)
a3,p - a3 -[.

*Markova, L. G.: "Method of Strength Analysis of Spherical Bulkheads of Sub-

marines", Collection, NIVK, Number 6, 1936.
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Stresses in the sections of the thrust ring must evidently be

equal to the reduced stresses in the meridional sections of the supporting
edge 0 3np .

In these expressions, (Figure 49), R is the radius of the spher-

ical bulkhead; r is the radius of the supporting edge of the bulkhead; t

is the thickness of the bulkhead; q is the design pressure on the bulkhead;

# is Poisson's Ratio (M:O.3); F is the area of the section of the thrust
ring; A = 2.598r/tR is a conventional notation.

In calculation of the area of the section of the supporting ring

F, there must be included, in addition to the area of the connections es-

pecially designed to produce the thrust resistance of a spherical bulkhead,

also the area of that portion of the hull plating immediately adjacent to

these connections.

The magnitude of the longitudinal and transverse reactions of the

supporting contour, with respect to which the strength of the welded or riv-

eted connections of the spherical bulkhead to the hull plating and to the

thrust ring must be checked, are determined by the following expressions:

longitudinal reactions:

T . qnr'r2 q'
2r 2 r7]

transverse reactions (thrust):

Fa 3 n
p  [8]

21. EFFECT OF THE CROSS-SECTIONAL AREA OF THE THRUST RING.

1. The magnitude of the design stresses, which determine the strength
of a spherical bulkhead, depends strongly on the magnitude of the cross-sec-

tional area of the thrust ring; this dependency increases as the central

angle of the spherical bulkhead @0 decreases.

Below are given numerical examples, illustrating the influence of

the area of the section of the thrust ring, on the stresses of a spherical

bulkhead having a central angle usually found in practice in accordance to

requirements for the mounting of sphericdl bulkheads in submarines.
The relative magnitude of the area of the section of the thrust

ring may be expressed as the thrust coefficient X, varying in the range from

zero (for F = 0) to unity (for F =oc) and is determined by the following

expression:

x- F 9]F + tr



The dependence of design stresses in the conic (ao2,p) and in the

meridional (o3,) sections of a spherical bulkhead, on the value of the

thrust coeffl-cient X is shown in Figure 32, applicable to the example cited
below. From an examination of the curves in Figure 52, it is apparent that

the effect of the area of the section of the thrust ring increases inversely

with the thrust coefficient.

On the basis of the foregoing and considering structural and pro-

duction difficulties in connection with increasing the area of the section

of the thrust ring, the conclusion must be made concerning the ineffective-

ness of increasing of the section of the thrust ring in excess of a certain

limit, beyond which the advantage of such rings becomes comparatively small.
Using the coefficient of thrust (X<0.5), which can be attained

rather easily in practice, the largest reduced stresses in spherical bulk-

heads are found to act in its meridional sections, in the region of the sup-

porting edge (0sp); these stresses are compressive and equal to the com-

pressive stresses in sections of the thrust ring.

Assuming a reasonable value for the allowable compressive stress

for the bulkhead material, and by using Figure 52, the minimum required
area of the section of the thrust ring may be found, guaranteeing the strength

of the bulkhead.

Example:

To compute the design stresses in a spherical bulkhead, using the

following data:

radius of the bulkhead R = 850 fcm]

radius of the supporting contour r = 230 [cm]

thickness of the bulkhead t = 2.5 [cm]

thickness of the hull plating t = 1.3 [cm]

pressure on the bulkhead q = 6 [atm]

The area of the section of the thrust ring (Figure 53):

F - 3(20 x 2.5) + 20 x 1.3 - 176 [CM 2]

sin 160 .-. -23.-0 0.2T cos 400 - 0.9P
R 850

rt .(23 x2.5) - 8.25F 1T~ -

A - 2.381 23 - 11.9

F2.5 x 850
xT- 176 -0.

F+PC 1T+230x2.5

The stresses in the meridional and conic sections, outside of the

supporting contour, by Equation [] are:
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qR (O x 850) -1020 atm
t" 2 (2x2.5)

The stresses in the conic sections in the region of the support-

ing contour by Equation [2) are:

a a1020 1- .25 x096+ .7 0.963 -1020(1 - 0.242) - 775 atm23.25 +11.9

Stresses in the meridional sections in the region of the support-

ing contour by Equation [3] are:

3- 1020 [1 3.25 x 0.96+0.7 11.9 1020(1 -3.00)-2040 atm3.25 +11.9

Reduced stresses by Equation [41, [51 and [61 are:

oV P - 0.T 01 - 0.T x 1020 - 714 atm

n 0o2 - IVa3 -T75 + 0.3 x 2040 -1390 atm

o 3 np = 3 - 2 -2040 - 0.3 X 775-2260 atm

Stress values, in the absence of a thrust ring (F = 0, X= 0), are:

01-1020 SW

2 - 1020(1 -cos
2 i) - 100(1 -0.927) -75 atm

a3 . 1020 (1 - cos j0 A) - 1020(1 - 0.963 x 11.9) - - 10700 atm

Vlnp -714 atm

0 2np - 75 + 0.8 x 10700 - 3 280 atm

0 3np ' - 10700 - 0.8 x 75 - - 10720 atm

Stress values, for complete clamping of the supporting contour,

are:
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F-. x-1

01 - 1020 [atm]

2 -1020 (- 0.963) 962 [atm]

3- 1020( -  11.9 ) 306 [Atm]

VIRp - 714 [atm]

0 2np " 9 62 - 0.3 x 306 -870 (atm]

0 3np - 3 0 6-0.3x962-0

The dependence found between the reduced stresses and the value

of the thrust coefficient is shown in Figure 52. When this dependency is

known, the area of the section of the thrust ring required for strength and

solidity of the bulkhead can be determined more exactly. Thereupon, the

forces may be found for which the strength of the welded or riveted connec-

tions of the spherical bulkhead to its thrust ring and to the hull plating

must be assured.

Longitudinal reactions, by Equation 17]'

r =qr (6 x 230) _ 690 [kg cm- ]

2 2
Transverse reactions, (thrust), by Equation [81

//-a _f (2260 x 176) _ 1730 [kg cm-]t 3np'- r 230

22. STABILnT ANALYSIS OF SPHERICAL BULREADS

1. When the external load .is applied from the convex side of a spherical
bulkhead, the analysis vith respect to stability of its shape should be carried

out, because in this case the stability of a spherical bulkhead is lost at a

loading, which produces in its sections relatively small stresses. For such

a calculation the following formula is used, developed by Zoelly, for a com-

plete spherical shell:

-" i-~ = R40 ) [101

where qKp is the critical pressure [atm]; t is the thickness of the shell

fcm]; R is the radius of the shell [cm); E is Young's Modulus, usually taken
as 2 x 106 rkg/cm2 ]; # = Poisson's Ratio = 0.3.

However, as tests show, Zoelly's formula turns out to be very in-
exact, giving much too large values for the critical load both for a complete
spherical surface, as also to a larger degree for the portion of the spheri-
cal surface, bounded by some supporting contour. (This latter is the case
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of a spherical bulkhead).

By using certain available experimental data, Zoelly's formula can

still be used, by substituting into it appropriate correction factors, which

consider not only the inexactitude of the formula itself, but also the ef-

fect of the shape and degree of rigidity of the supporting contour of the

spherical shell.

As a result of the evaluation of available experimental data, the

following formula can be proposed for computation of the value of the indi-

cated correction coefficients, (Figure 54).*

k - 0.45 (sin 00 + (1 - sin f)X] [ll ]

where O0 is half the central angle, bounding the spherical shell; X = F/F

+ tr = the coefficient of rigidity of the supporting contour of the shell;
F is the area of the thrust (supporting) ring; r is the radius of the sup-
porting contour.

Example:

To determine the critical loading on a spherical bulkhead of thick-

ness t = 25 mm, with radius R = 8.5 m; supporting contour radius r - 2.5 m

with section shown in Figure 53 (F = 176 cm2 ).

Critical loading according to Zoelly's Formula [10],

q - 240 ('0x2 -20.8 (atm)
k 850 /

Coefficient of rigidity of supporting contour:

X F . 176 - 0.234
F+tr 176+2.5x230

Half of central angle:

sin 00 " 230 .0.27
850

Correction factor by Equation (llJ:

k - 0.45 [0.27 + (1 - 0.27) 0.234] - 0.20

Critical load:

- 0.20 x 20.8 - 4.2 [al

*For an angle #0 of the order of 15'.
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CHAPTER VI

REINFORCEMENT OF TEE BULL

In designing subAirine bills, as vell as hulls of surface Vessels,

we must deal with the problem of strength analysis and structural design of

different types of local reinforcements of the Joints (seamg, connections)

of the basic hull, Local refnforceints of the hull are Intended to respced

to the various local loads acting on the hull, or to restore the strength

of connections in such points where they have been weakened for one reason

or another.

Calculation of the strength and the construction of submarine hull

reinforcements, designed to assume various local loads acting on the hull,

include for example reinforcements for ice loading, reinforcements under in-

stallations and mechanisms mounted in the ship, reinforcements for hatch

openings and hawse pipes, and is in no way fundamentally different from cal-

culation of such reinforcements for surface ship hulls. Specifically pecul-

iar reinforcements for submarine hulls, which therefore require special in-

vestigation, are only reinforcements designed for the restoration of the

strength of the hull at points where it is weakened. Under the latter cate-

gory we may enumerate points of deviation from the true circular shape of

the frames and plating of the pressure hull and various openings in it.

In addition to these basic types of reinforcements, must be noted

the necessity in certain cases of employing local reinforcements to submarine

hulls only for the duration of tests by internal water pressure while in

the dockyard. The strength of a submarine hull, as true of any other engi-

neering structure, is determined by the strength of such weakened, even

though isolated, points of the hull, which result from possible neglect or

omission during design and construction. Therefore, no less attention must

be paid to the problem of determining the appropriate location for reinforce-

ment of wittingly weakened portions of the hull than is given to the question

of the strength and stability of the entire hull.

In the present chapter are given the general theoretical fundamen-

tals, structural requirements and practical standards relating to the above

indicated types of reinforcement of submarine hulls.

23. THEORETICAL FUNDAMENTALS FOR REINFORCEMENTS OF THE HULL

IN ZONES DEVIATING FROM TRUE CIRCULAR SHAPE.

1. In solving the problems related to assuring the strength of sub-
marine hulls, we must deal in practice with instances of significant de-

rzrture from the true circular shape of the frames and plating of the pres-

sure hull. Incorrect bending of frams and plating occur either during

construction of the hull or during operation of the submarine. In the pres-

ent case, we are concerned with incorrect bending which exceeds the limits
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and specifications established in industrial standards, in conjunction with
the usual and conventional methods applied in calculation of hull stability.

Decrease of hull strength, unavoidable under excessive and incorrect bending,
must be compensated by adequate reinforcement of the hull or by decreasing
the limiting depth of submersion.

A detailed analytical investigation of the effect of initial bend-

ing in a ring and a cylindrical shell on their strength is given in Chapter
V of Part 2. The results of this investigation may be applied completely
and used for a quantitative evaluation of the unfavorable effect on the sta-
bility of the hull of an initial, incorrect bending of its frames and shell
(plating).

2. Let us examine first the phenomenon of longitudinal compression
of a bar, having an initial bending of the nature and form of a curved line,
expressed by the equation y - f(x).

As is known, every such curve can be expressed as the sum of ortho-
gonal curves, formed according to modes of the free oscillations of the bar,
i.e. in the given case in the form of sinusoids with a different number of
half-waves (Figure 55). Such a presentation is equivalent to expansion of
the y u f(x) into a Fourier series, i.e.

where a,, a2 , a5 ... an are coefficients of the series representing the
maximum bending deflections of the component sinusoids.

To determine the magnitude of these coefficients, for example of
coefficient am, the series must be multiplied by sin mwx/i and integrated
within the limits from 0 tol.

Noting that fl sin2 (mWx/l) dx - 1/2 land all the remaining in-
tegrals with the product of the sines are equal to 0, we get:

2l mn's

an - 2jf(z) sin dr [ll

0

The value of the integral on the right-hand side of Equation [1],
can be readily computed by the tabular method according to the known values
of the function f(x), i.e. according to the known values of the ordinates of
the bent axis of the bar.

With longitudinal compression of the curved (bent) bar, there

occur in its sections, in addition to compressive forces, bending moments
which produce a bending of the bar and which are equal to the product of
the compressive force and the magnitude of the total, that is the initial
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and the elastic, deflections of the bar.

The bending of the bar may be expressed as the sum of the bendings

of the bars, initially bent according to the types of sinusoids indicated

above, with a different number of half-waves.

Let us examine one of such partial bendings, for example with M
half-waves, determined by the initial shape ym - am sin mux/i. Designating

the largest elastic deflection for it byA am, i.e. having taken for it the
elastic curve as A ym = A am sin mfrx/L, we get the following differential

equation for the bending:

MX "P (am + Aam) sin M-2- El (Aym) "-El T!L!2 Aa. sin mnor'12

Whence

AaG,, 1 -a 1
khr2m 2 - 1 PON 12

p12  P

am +A m a 1[

1P 31
P1

where*

n,. El_2 ,,2P ,2 [4]

The total bending moment in sections of the bar is:

72Mx PI2(a. + Aa.) sin .P a."sn-P, am
1 P 1[ 5]

P

*Editor's Note: The Russian word for Euler starts with the character P.
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The quantity ',m' determined by Equation [41 represents the Euler

loading of the bar, which corresponds to the bending at the loss of stability

with m half-waves; this follows from the fact that with P - Ppm, the de-

flection a the bar A am becomes infinitely large [Equation (2))'.

The minimum value of Euler's loading is found to be for m a 1,

that is for a bending of the bar in one half-wave. This form of initial

bending of the bar is the least favorable, since for a given value of the com-

pressive load P, it affects, more than all other forms, the magnitude of

the bending moments in the sections of the bar. This follows directly from

Equation [5).

In Equation [5] for the bending moments, the first term of the

series is predominant, corresponding to the value m = 1, especially under

a compressive load P acting on the bar which approximates closely Euler's

loading Pol a EI 2 /i .. Therefore, we may confine ourselves practically,

in the investigation of interest here, to consider in this expression only

the first term, i.e. to consider the greatest bending moment acting in the

central section of the bar (with x - 1/21) equal to:
a al

AtP IP.LVol.
-P P 1 - a. A

where a, is the initial deflection of the bar determined by Equation [1) with

m a 1; 00 a P/F is the compressive stress in the sections of the bar corre-

sponding to the compressive load P, where F is the area -of a section of the

bar; vai a Pp1 /F is Euler's stress of the bar.

The maximum stress in the central section of the bar (from com-

pression and from bending) is

n * ° + a °° + = AF Li + a [61

where W = nhF is the moment of (resistance) of a section of the bar, equal

to the product of the area of the section F by the height of the section

h and by the coefficient of efficiency q which depends on the shape of the

section.
Using the expression obtained, Equation [6), the largest initial

bending deflection of the bar can be determined for which the largest stress

in its sections will not exceed a given limit. Indicating this limiting

(critical) stress by eK we find the following expression for the admissible

initial bending to be:
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3. On the basis of the investigation outlined above, the following
conclusions can be drawn with respect to the influence of initial deflection

of the bar on compressive deformation.

In compressing a bar having an initial deflection, bending stresses

develop in its sections whose magnitude depends not only on the magnitude

of the compression loading and on the magnitude of the deflection, but also

on the form of this bending. As the compression loading P increases, the

effect of the initial deflection increases sharply, which has the form of

one half-wave, i.e. a form corresponding to that characteristic of loss

of stability of the bar. Under a compression loading close to Euler's load-

ing of a bar, such a deflection shows a decisive influence on the deforma-

tion of the compressed bar, and therefore, it is possible to confine calcu-

lation to the effect of only this form of the initial bending of the bar.

In this case, the magnitude of the admissible initial deflection can be

found by Equation [71 as a function of the design compressive stress in the

bar a0' of Euler's stress opl, of the value of the limiting stress of the

material vK, and of the shape of the section, determined by the coefficient

of efficiency, with respect to the compressed. edge of the section, ).

The presence of initial bending in the bar may very much diminish

its resistance to the action of a compressive load, not only because the lar-
gest total stresses then occurring in the sections of the bar may be danger-

ous to the structural material, but chiefly, because these stresses diminish

Euler's loading on the bar as a result of decrease of Young's Modulus E

entering into the theoretical formula for the deformation of this loading
(Fart 2, Section 33). The decrease of Euler's loading, in turn, produces

a further increase of maximum stresses in the cross-sections of the bar,

as may be seen from Expression [6]. The progressive character of the un-

favorable effect of the initial bending of a bar on its resistance to the

effect of a compressive load may lead to a great decrease of its Euler load-

ing, i.e. of its failure load, as compared with the magnitude of this load-

ing when determined by the usual theoretical formula.

I. Any deviation from thJe true circular shape of the frame may be ex-
pressed in terms of a sum of individual deviations therefrom, having an ex-
act sinusoidal form -it a different number of waves, i.e. in the form of

a series (Figure 56):

W,4= fin n" [8]

where w. is the total magnitude of the deviation from a circle in the section

of the frame, determined by angle a ; the angle a is measured from the sec-
tion for which w = 0; fn is the magnitude of the maximum deviation correspond-
ing to the form of a sinusoid with n waves; n > 2 is an integer equal to the
number of waves of which the sinusoids are composed, constituting the
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deviations of the frame from a true circle.
If the function w. is known, then the coefficients fn of the se-

ries [8], can be found by multiplying it by sin no and subsequent integra-

tion within the limits from 0 to 2v:

f.-If sfIs  [9]

0

With the application on the frame of a uniformly distributed com-

pressive loading p along its circumference, there occur in its sections in

addition to compressive forces S a pr, also bending moments equal to the

product of the compressive force S and the magnitude of the total, i.e. of

the initial and elastic, deviations of the frame from true circular shape.
This bending of the frame can be expressed as the sum of the bending of the

rings, initially bent according to the true sinusoidal curves mentioned

above.
Let us examine separately one such component bending, determined

by the initial form 6 - fn sin no and by its elastic form &.- Afn sin

e.
By substituting the expressions for w. and Aw into the well known

differential equation for the bending of a ring, we get:

El F$ AiII----- A +A -NM- S (.+a,).)P--r(W. +Aw.)

A~f 1 1f

El -X1)i 1 a- [10]
Pr 3P

&s +

f.+Af.-f 3 1-L
1-V~ [11)

Pin

where

Pon E. (n2 _1) [12]

,3
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The total bending moment in the sections of the frame is:

E_,, sn~f, + At.) s.in ,,o. -r fn: P sin ,,o(3

Pn

Equation [12] determines the Euler loading of the frame corre-

sponding to a bending with n waves. Since the magnitude of this loading
is found to be least for n = 2 (p2 a 3El/r 3 ), i.e. for an elliptical bend-

Ing of the frame, then such a type of initial bending of the frame appears

the least favorable from the point of view of its effect on the magnitude
of the bending moments in the frame sections, especially if the external

loading p, is close to the Euler loading (P. - 3EI/r3 ) acting on the frame.

In this case, it is possible practically to limit ourselves by

retaining only the first term in the general expression, Equation [13], for
bending moments in the sections of the frame, i.e. to consider the maximum

bending moment as equal to

f2 pr f2
_-L i- *0 141

Po2 a t

where f2 is the value of the greatest deviation of the frame from true cir-

cular shape, corresponding to an elliptical shape of the deviation (n - 2);

-0 - pr/F is the compressive stress in sections of the frame corresponding
to the applied loading p where F is the area of the section of the frame;

IN a p,2 /F is Euler's stress of the frame.

The maximum total stress in the frame (due to compression and bend-

ing) is:

S W 0 [ h 1 (1]

where W is the moment of resistance of the section of the frame with respect

to its compressed edge; W a nhF where h is the height of the section and"

is the coefficient of efficiency.

The largest admissible deviation of the frame from a true circular

shape, at which the maximum stress in it *a will not exceed the value of

the specified limiting stress for the frame material vK, will be determined

by the expression
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In the above investigation, the frame was considered as an isolated

ring without taking into account the supporting effect on the deformation
of frames of rigid transverse bulkheads of the hull (Part 2, Section 17).

The favorable effect of transverse bulkheads on the deformation of bending
and on the stability of the frames located in the span between bulkheads

may be considered by an appropriate increase of the value of Euler's stress

up, entering the expressions for an isolated frame found above. The in-

creased Euler's stress, corresponding to a pressure on the hull at which
one of its elements between transverse bulkheads loses stability, may be
found with the aid of the following expression:

=, -i [17]

where q. is the intensity of the pressure at which the portion or element

of the hull between transverse bulkheads loses its stability [see Part 2,

Section 18, Equation (52)]; 1 is the distance between frames; F is the sec-
tional area of the frame (together with the adjacent strip or belt of pla-

ting).
5. Deviations of the hull plating from a true circular shape in the

spans between frames usually occur as local smooth bulges or depressions

(dents) between the frames, which extend (transversely) almost to the length
of those half-waves arising in the plating when its stability fails under
external water pressure. On the basis of what has been said in Paragraph
1, as well as in the preceding paragraph, it should be clear that precisely

such a shape of initial undesired bending of the plating, coincident with
the shape of its loss of stability, must be most unfavorable from the point
of view of resistance to the action of compressive and bending loads. Under

such conditions of least favorable type of initial bending of the plating,
the maximum stress in its longitudinal section in the span between frames

can be found by Equation [261 (Part 2, Section 31), assuming in this ex-

pression n = n1, that is,

hf -1] [18]

where h is the thickness of the plating; fo is the greatest initial bend-

ing deflection; e0 is the stress in the plating at the design pressure; e,
is Euler's stress in the plating.



The greatest admissible deviation of the plating from a true cir-

cular shape, at which the greatest stress in it does not exceed the speci-

fied limiting stress OK is determined by:

fo 1[1 L) V0\

A -6\ua af,)9

6. From comparison of the expressions found in the foregoing, which

determine the effect of deviation from a true circular shape on the strength

of frames and plating, with the analogous expressions found in Paragraph

2 of this section for a bar under compressions, it is evident that all

these expressions are completely identical. Therefore, the general con-

clusions made in Paragraph 3 for the case of a compressed bar may be applied

in full, both to the frames and to the plating of the circular pressure hulls

of submarines. It is necessary only to point out that an incorrect initial

bending of a frame (in the region of its concave portion ) affects unfavor-

ably not only the strength of the frames themselves, but the strength of

the plating between the frames as well by increasing the compressive stress

w0 acting in the plating and thus lowering its resistance as evident from

Equations [18 and [19].

24. PRACTICAL STANDARDS AND REQUIREMENTS.

1. As a result of the unfavorable effect of an incorrect initial bend-

ing of frames and plating on their strength under compressive loading, in

practice there is noted a discrepancy between full-scale tests on the proto-

type and model tests of these structures using design data from correspond-

ing theoretical formulas.* To eliminate such discrepancies, practical cor-

rection coefficients are introduced into the theoretical formulas which are

correlated with the data found from full-scale and model tests, made on

structures containing deviations from true circular shape which are unavoid-

able due to the exigencies of production conditions (Part 2, Section 34).

If deviations from a true circular shape, in excess of standard

production specifications and tolerances established, which can be traced

to production defects, or which result from operation of the submarine, are

detected in its hull, then all such hull areas must either be repaired or

reinforced to eliminate possible weakening with respect to the assumptions

made in design. The expressions obtained in the preceding paragraphs can

be used both for establishment of the above mentioned standard production

tolerances and also for the calculation of hull reinforcements in such zones

*Editor's Note: This discrepancy between full-scale and model tests is

usually termed "scale-effect" in the U. S.
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where the deviation of frames and plating from a true circle exceeds pro-

duction allowances.

The value of production tolerances, established on the basis of

relevant computations together with previous testing of submarine structures

can be taken appropriately as follows: for the hull plating an order of 1%

of the thickness of the plating, and for the frames -- an order of 0.2% of

the frame radius. Such rigid standards have been specified on the assump-

tion that the form of deviation of frames and plating from the correct cir-

cular shape coincides with their form of loss of stability. In the case

of a more favorable shape of initial bendingp the indicated standpands may

obviously be improved correspondingly.

2. In examination of the question of standards for the admissible de-
viation of frames and plating from true circular shape, let us dwell brief-

ly on the method of measurement of the magnitude and forces of these devia-

tions. Measurement of the initial bending of the plating in the span be-

tween frames can be readily made with the aid of a straight edge provided

with a slide at the middle which directly determines any sag of the mid-

point of the plating with respect to the frames. After a series of such

measurements have been made at intervals of 0.1 to 0.2 of the distance be-

tween the frames, it will be possible with sufficient accuracy to get the

shape and magnitude of the initial sag of the plating in its central cross-

section.

The problem of finding the magnitude and shape of the initial de-
flection of the frames, and of its subsequent resolution into simplest com-

ponents, is solved as follows:

Let Ho - f(o) be a function representing the line where the frame

is secured to the plating, expressed in polar coordinates, for which an

arbitrary point O is taken as a center coinciding insofar as possible close-

ly with the true center of the circumference of the frame, (Figure 57).
This function may be represented in the form of the following series:

R- r o + a1 s ine + bcosa + a 2 sin 2a
[20]

+ b2 cos go + 43 sin 8o + b3 coo 8, +

For determination of the geometric meaning and the magnitude of

the coefficients of this series, we multiply it in succession by dej, sine

do, corndo, sin 2ode, cos 2oda, etc., and integrate in the limits from 0

to 2w.

Multiplying by do and integrating, we get:
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2w

ro2wJO R da

Since the integral 2w
OR a do

0
expresses the length of the circumference of the frame, the value ro there-

fore represents the radius of a circle (average radius of the frame) having

a length equal to the length of this circumference.

Multiplying the series by sinada and by cosada and integrating,

we get:
2a

al R . sins do

0

2w

bi - R, cosad

0

The terms of the series alsina and b1cosa express translational

displacements of the circle in mutually perpendicular directions of the

magnitudes a, and b, respectively (Figure 58).

The displacements of the circle correspond to the shift of the
initially arbitrarily chosen center point 01 to the true center 0 of the

frame circle with radius ro .
Multiplying the series by sin 2ada and cos 2ada and integrating,

we get:

2w 2w

a 2 =i- Ra sin2a da; 2  fcosgod

0 0

The terms of the series a2 sin 2a and b2 cos 2a express the de-

flection of the frame (Figure 59, a and b) and the sum of these terms ex-

presses the deflection (Figure 59 c) as determined by:

f-C 2 sin (2*+ '2) (21]

This deflection has two waves (n - 2); the frame is elliptical in shape,

with the major axis, determined by the angle #2 = 1/2(w/2 - arc tan b2/a2 ),

whereby, the largest value of the deflection of the frame is found to be
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equal to:

C - 3 +b 2  
[22]

Similarly, the coefficients of subsequent terms of the series,

Equation [201 can be found, and the components of the deflection that they

determine, using the following general expressions:

2W

an Ra sin nada

0

2w

b- I R. cosnada [23]

0

S_ arc tan

c ,, -Va, + b.?

where n is the number of waves of the considered component of the deflec-

tion shape of the frame.

The computation of the coefficients of the series, Equation [20],

using the expressions obtained, must be made with the aid of Table IT*
In Column I of Table 17 the numbers of subdivisions of the frame

circle into equal parts are entered (Figure 57); Column II contains the

distances from these points to the center of reference of the frame circle

01. In the succeeding columns of Table 17 the values of the column headings

are entered vhich occur in the expressions for the coefficients of the series,

Equation [201.

Having designated the sums of the values of the columns by the

symbol 2: with a subscript identifying the column number, we get the follow-

ing expressions for the computations of the coefficients of the series (20).

*The table was made for computation of the first five terms of the series

[201; for the calculation of subsequent terms of this series, the number

of columns in the table must be increased correspondingly.
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3. If the found deviations from true circular shape of the frames and
hull plating exceed the standards, specifications and production tolerances

established for them, and if these deficiencies can not be eliminated by

subsequent correction, all such zones of the hull must be reinforced in
correspondence to the requirements of the formulas used for calculation

and given in Section 23.
The design stress used in these formulas must be taken as equal

to the stress at the design depth of submersion of the hull, while the
limiting stress must be taken as equal to the yield point of the hull ma-

terial.
When frame reinforcements are being made, what was said in Sec-

tion 23, Paragraph 6, with respect to the unfavorable effect of the inwardly
bent portion of the frame not only upon the strength of the frame itself,
but also on the strength of the plating adjacent to it, must be taken into

account. The necessity of reinforcement of the hull frames will be encount-
ered in practice in exceptional cases only, principally in the region of in-

correct concave bending. For reinforcement of the frame in this case, a
belt or strap must be placed on the adjacent plating, to increase the mo-
ment of resistance of the section of the frame with respect to the compress-

ed edge.
Mounting of a superimposed sheet on the concave side of incorrect-

ly bent plating, and filling of the space between this sheet and the plat-
ing with water-proofing material (cement, red lead, etc.), must be consid-

ered as the best type of structural reinforcement of the plating in the
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spans between frames.

In the case of a small initial incorrect bending of the plating,

the reinforcement may be limited to the installation of longitudinal or

transverse stiffeners between the frames.

25. FRAME REINFORCEMENT IN FILLETED AREAS.

1. In the frames of the pressure hull, the necessity for fillets,*

i.e. for local depressions and buckles of oval shape, occurs in the region

where the propeller shafts pierce the pressure hull and in the region of

the torpedo loading hatches.

Reinforcement of fillets in the region where the propeller shaft

passes through the hull requires an adequate strengthening of the profile

(section) of the frame, calculated for the action of a compressive force

and of a bending moment in the frame section equal to

s = PpP; M = S x f; [24]

where pp is the intensity of pressure on the frame at the design depth of

hull submersion; r is the radius of the circumference of the frame; f is

the greatest height of the fillet.

For fillets projecting beyond the outlines of the frame, the re-

quired local strengthening of the latter can be achieved easily by installa-

tion of gussets notched for the passage of the shaft. The inner edge of the

gussets, suitably reinforced, will resist the thrust; this inner edge must

be calculated for the action of a compressive force only equal to

P - 0[25

where 001 is the distance between the center of the frame circumference and

the center of the fillet circumference (Section 13).

In calculation of the strength of the reinforcement of a fillet

with respect to the action of the forces determined by the above expres-

sions, the maximum tensile stress must not exceed the yield point of the ma-

terial and complete stability of all reinforcement connections must be

guaranteed.

2. The height of the fillets in the pressure hull frames in the vicin-

ity of the torpedo loading hatch changes along the length of the hatch, in-

creasing in the direction of the entrance opening of the hatch. Reinforce-

ment of low fillets can be made by local strengthening of the frame section

*Editor's Note: The Russian uses a term which may mean fillet, rounding
off, recess, chamfer; these are obviously fillets in some

cases and convex structures in others, faired as strength
or space limitations require.
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at its constant height, calculated for the application of an axial force

and bending moment as determined by the expression in Equation (24]. For

high fillets, reinforcement of this type is structurally difficult to real-

ise; therefore, such fillets must be reinforced by removable rectilinear

braces, mounted between the ends of the cut principal frame (Figure 60).
In this case, the portion of the frame forming the fillet may have a re-

duced cross-section, corresponding to the radius of the circle of the fillet
concerned. The stability of the brace must be calculated for its longitudi-
nal compression force equal to (see Section 13)

P - q x 001 (261

where qp is the design pressure corresponding to the design depth of hull
submersion; I is the distance between frames; 00. is the distance between the

center of the frame circle and that of the fillet circumference.
The structural design of such a reinforcement of a fillet must

satisfy the following requirements:
a) the axis of the strut must be rectilinear and practically

coincide with the chord connecting the centers of gravity of the sections
of the principal frame;

b) the compressive force must be transmitted into the strut not
through the bolt connections but directly by the tightly fitted contact of
the surfaces of the supporting structures;

c) the possibility of replacement of removable struts 'by corre-

sponding expansion members designed for reinforcement of the fillets during
testing of the hull in drydock by internal water pressure must be provided
for.

26. HULL REINFORCEMENT AT CUT OPENINGS.

1. An examination of the conditions which lead to stress concentra-

tions in areas where openings are cut in the cylindrical plating of the
pressure hull of submarines leads to the conclusion that the magnitude and
character of the distribution of such concentrations must remain the same as
in the case of openings in a flat plate, subjected to compressive forces
in mutually perpendicular directions. Having this in mind, it is possible
for establishment of design and dimensions for the reinforcement of open-
ings in the plating of submarine pressure hulls to use the corresponing
data for reinforcement of openings in the plane connections of the hulls
of surface vessels.*

*Shimansk,, Yu. A.: "Designing of Discontinuous Bull Connections", State

Publishing House for Shipbuilding, 1948.
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However, there must be considered additionally the action of forces, normal

to the cylindrical plating (water pressure), absent in the case of an open-

ing in the flat connection of surface vessel hulls.

2. Stresses in the longitudinal and the transverse sections of the

cylindrical plating of submarine hulls are determined by the following ex-

pressions:

01 " - ; 02"- T

where r is the radius of the pressure hull; qp is the external design pressure on

the plating; t is the thickness of the plating.

When a circular opening is cut in the plating, stress concentra-

tions occur in the region of this opening; these stresses reach their max-

imum on the edge in the longitudinal and transverse sections taken through
the center of the opening (Figure 61).

The stress on the edge of the opening in the longitudinal section,
passing through the center of the cutout, is

CrMMft3 al - a2-- 2t- .Y--25V

similarly in the transverse section,

2_ MAX 2 1 2 t ° t

From a comparison of the above expressions for stresses, it is
evident that a circular opening in the plating causes an increase of the

stresses therein only in the longitudinal section, whereby the coefficient
of stress concentration at the edge of the hole is found to be equal to 2.5.

In accordance therewith, reinforcement of such an opening must consist of
the installation along its edges of transverse strap plates only, (Figure
62). The usual practice of installing a reinforcing plate embracing or sur-

rounding the entire opaning is not only unnecessary but favors an undesired
attraction, to the region about the opening, of stresses acting in longitudinal
sections of the plating.

3. In the determination of the thickness of reinforcing strap plates
(Figure 62), there must be taken into account not only the magnitude of the
coefficient of stress concentration found above (i.e. 2.5), but also the
extent of the region of stress concentration, proportional to the diameter
of the opening. The extent of the region of stress concentration or, con-
sequently the length of the diameter of the opening, must be evaluated in
relation to the thickness of the plating. It may be considered that if the
ratio of the diameter of the opening to the thickness of the plating is of
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an order of 10 - 15 or less, the excessive stresses in the region of the

opening have such a localized extent that they cannot have any notable un-

favorable effect on the strength of the plating. With the increase of the

ratio of the diameter of the opening to the thickness of the plating, these

excessive stresses begin to become more general in extent, at which the

strength of the plating will prove to be correspondingly decreased. On the

basis of what has been said above, the following expression for determining

the thickness of reinforcing strap plates my be recommended (Figure 62):

9-2t [I - 151] - , 271

where t, is the thickness of the strap plates; t is the thickness of the

hull plating; d is the diameter of the opening; k is a coefficient.

The curve given in Figure 63 shows the change of the coefficient

k in Equation (27] in function of the ratio of the diameter of the opening
d to the thickness of the plating t. The limiting value of this coefficient,

with d/t .oo, equal to k - 2, corresponds to a coefficient of stress con-

centration equal to 3, i.e. to a value exceeding the largest obtained above

in the longitudinal section of the opening which was equal to 2.5. Such

an excess is Justified by the fact that the presence of the reinforcing

strap plates must change the distribution of stresses somewhat unfavorably

in the region of the opening, in comparison with what it would be without

strap plates, at which the coefficient of stress concentration was 2.5.

4. The water pressure upon the plating is equilibrated on the plating

by the stress components acting in the longitudinal sections of the plating

(Figure 64 a). For the equilibration of the hydraulic pressure absorbed
by the cover of the cutout and by a certain region of the plating itself
adjacent to the opening, it is necessary to have a supplementary reinforce-

ment consisting of longitudinal beams mounted between the nearest frames

(Figure 64 b). The design loading, acting on each of the beams, can be
taken as a load distributed as a triangle on a segment of the beam of length

d and equal to

Q - P

where qp is the design water pressure and d is the diameter of the open-

ing.

If the diameter of the opening equals the distance between the
frames, the maximum bending moment in the sections of the beam will equal

Q' 1 3[28)

6- 12 P
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wherein I is the distance between the frames.
When reinforcing an opening for direct action of hydraulic pres-

sure, a coaming about the opening my be used as one of the members for re-
inforcing the opening. At a loading qp, corresponding to the design depth
of submersion of the submarine, the maximum stresses in the reinforcing
members should not exceed the yield point of the material.
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CHAPTER VII

STRENGTH ANALYSIS OF DECK STRUXTUMES
2T. GENERAL FOMHDATIO OF STHGTE ANALYSIS OF DECK

STRUCTURES AND THEIR VARIOUS TYPES.

1. Rigid or stable deck structures of submarines are the superstruc-
tures mounted on the pressure hull, possessing the same resistance to ex-
ternal water pressure as does the entire pressure hull. Therefore, the
general foundations for calculation of strength of deck structures are the
same as those stipulated for the pressure hull. Thus, such stable deck
structures ust be analyzed with respect to both strength and stability, by
taking the 4nitude of the design load as given by Equation [10] of Sec-
tion 3, which defines the design loading for the pressure hull. Determina-
tion of the stresses in the sections of a deck structure, the determination
of its critical loading and the establishment of standards or norms vith re-
spect to dangerous stresses must be carried out taking into account the con-
struction and shape of the deck structure involved, i.e. with respect to
the particular type involved.

According to the outline, stable deck structures are subdivided
into two basic types: (a) circular or round deck structures, (b) oval or
elliptical deck structures.

2. Calculation of the stability of a circular deck structure
(either perpendicular or horizontal) differs in no way from that used for
calculation of circular submarine pressure hulls. A certain difference
consists only in the thickness of the plating, usually determined by the
requirement of guaranteeing a combat strength* sufficiently high for deck
structures. In virtue of this requirement, the thickness of the plating
of deck structures may prove to exceed notably the calculated thickness for
strength and stability of the plating. Taking this into account, the dis-

tance between the transverse ribs, stiffeners of the deck structure, de-
termined according to conditions of its stability, may be increased corre-
spondingly. In a number of cases, this circumstance may lead to a design
of dock structures without stiffeners; these structures possess a certain

advantage Insofar as the internal disposition is concerned.
3. Oval or elliptical shaping of deck structures is more favorable

from tbh point of view of dimensions as coqared to circular structures.
Hovever, such oval designs are less advantageous from the point of view of

*Editor's Note: The Russian uses here the term which, literally translated,
signifies "tenacity of life"; this the translator suggests

y be "combat survival". In either case, It apparently

=ast be a high safety factor.
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resistance to water pressure. Yet this disadvantage of oval design of deck

structures, compared to circular types, decreases greatly as the ratio of
the height of the deck structure to its transverse dimensions diminishes,
due to the participation, in the resistance of the deck structure, of the

transverse compression of its rigid end structures (cover and the portion
of the pressure hull, adjacent to the base of the deck structure). This

circumstance, as well as the increased thickness of the plating of deck

structures, Justify the use in practice of oval deck structures with a

vertical axis.

28. VARIOUS DESIGNS OF OVAL DECK STRUCTURES.

1. In practice, the following two varieties of shapes of oval deck

structures are used:
(a) in one case, the curve of the transverse sections of the deck

structure is made up of arcs of different circles, having common tangents

at the points of their juncture (Figure 65);
(b) in the other case, the curve of the transverse sections of

the deck structure is designed according to a true ellipse.

With the usual relations between the length and breadth of an

oval deck structure, both these shapes insofar as dimensions are concerned,

seem almost equivalent; however, a certain advantage prevails in favor of

deck structures made up of circular arcs. From the production point of view,

arcs of true circles appear the more favorable shape for designing an oval

deck structure. However, the technological advantages of such a *hape be-

come of small significance in mass production of submarines.

From the point of view of the resistance of oval and elliptical
deck structures with respect to water pressure, a true elliptical shape

appears more advantageous than an oval design consisting of circular arcs.

Such a conclusion may be drawn from the consideration that at the

points of juncture of the arcs of the various circles there results an in-
terruption of the continuity in the curvature constituted by these arcs in

the section of an oval deck structure.

2. In Figure 65 the shape of an oval deck structure is shown, consti-.
tuted by arcs of true circles of two different radii. The shape and dimen-

sions of such a deck structure are defined by the following relationships

existing between the five quantities:

R -b -(M-r) Cosa

a- ,- (N-,) sine

where P is the radius of the circles forming the side walls of the deck

structure; r Is the radius of the circles forming the fore and aft walls of

the deck structure (r<R); a, b are the half-length and half-width of the
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deck structure; a is the angle determining the point of junction of circles

of radii r and R.

Using these functions, we can get the following expressions for
the radii r and R;

R - cosa -6(1 -sin a)
sina +ooe -1 

Fb sine - (1-te ) (2]
sine + Coma -1

The quantities a and b contained in Equations [1] and [2] deter-
mine the over-all dimensions of the deck structure, i.e. its length and

breadth. The angle a determines the shape of the deck structure within
the limits of the specified over-all (or clearance) dimensions. In Figure
66 two extreme forms of deck structures are shown which correspond to the

principles of their design here under investigation.

Curve I shows the fullest shape obtained with a - 0 and corre-
spondingly R i co and r - b. Curve II shows the sharpest or most pointed

shape, obtained with a - arc sin (2ab/(a2 + b2)] and correspondingly R
- i/2b[(a 2 + b 2)] and r a 0. This shape is made up of two circles of ra-

dius R. The brokdn line shows an elliptical deck structure.

For such an elliptical deck structure design, the largest value

(R) and the smallest value (r) of radii of curvature of its surface are de-

termined by the following well-known formula:

.- 2; [---

b a

29. STR7W(O ANALYSIS OF OVAL DECK STRUCTURES.

1. If the walls of an oval deck structure were not supported by rigid

end structures (the roof or cover of the deck structure and the portions

of the pressure hull adjacent to it), they would necessarily undergo bend-
ing deformation under the action of the external water pressure; this would

increase the length of the deck structure while decreasing its breadth.

The rigid end structures of a deck structure impede deformation

of the walls, at the expense of shearing forces, produced along the line

of juncture of the wall to the rigid structures. Shearing forces, which

hinder a large bending of the wall, will increase the compressive forces

acting in its sections, i.e. they will promote the increase of rigidity and

resistance of the wall with respect to the compressive loading acting on

it. In this case, the resistance of the wall of the deck structure to an

external compressive load wli be determined not by the magnitude of the
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bending stresses occurring in its sections, but by the magnitude of the di-

rect compressive stresses occurring in these sections which may disturb

the general or local stability of the wall. Therefore, the stability of an

oval deck structure, as well as that of a round or circular deck structure,

should be analyzed for stability of its walls, taking into account the ef-

fect on their critical loading of the magnitude of the largest compressive
stresses acting in the sections of the wall at this loading.

2. With a correct elliptical shape of the transverse sections of an

oval deck structure, the stresses generated in its walls by bending will

be small in comparison to the membrane stresses and therefore, their effect

on the stability of the walls may be disregarded. In this case, making the

error on the safe side, it is possible to determine the critical loading
on the walls of a deck structure as is done for a circular cylindrical shell,

taking the radius of this shell as equal to the largest radius of curvature

(R) of the elliptical section of the deck structure as determined by Equa-
tion [3).

The largest compressive stress in the longitudinal section of the

wall of the deck structure corresponding to the radius R, which ought not

to exceed 80% of the yield point of the material, must be taken as equal to:

a- 1.1 to je [4]

bt

where q. is the critical loading, determined by the method set forth in
Section 6; t is the wall thickness of the deck structure.

3. The order of strength analysis of an elliptical oval deck structure
can be used also for the calculation of strength of an oval deck structure,

having the form of conjugate (connected) arcs of true circles. However,
with such a deck structure design, the wall stresses generated by bending

will significantly exceed the stresses produced by bending in the walls of
an oval deck structure of correct elliptical shape, and consequently, the
effect of these stresses on the stability of the walls of the deck structure

must be more substantial. In addition to the foregoing, in this case the

region of the wall having the largest radius of curvature R and subject to

the action of the greatest compressive membrane stresses will be considerably

larger than Is true for the elliptical shape of oval deck structures.
Both these unfavorable circumstances can be taken Into account

by a certain reduction of the standard, established above for the mgnitude

of the comressive stresses as determined by Iquation [']. With the usual
over-all dimensions of oval deck structures 2 a high, this standard mist be

reduced " mch as 50% of the yield point of the material.

4. The shearing forces generated along the connecting lines of the
deck structure walls to its end structures play a decisive part In the per-

formance and resistance of oval deck structures. The magnitude of the shear-

ing force v, whose general character of variation Is shown in Figure 67,
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=at be directly proportional to the height of the deck structure. As the

deck structure height is increased, the shearing forces and the shear stress-

so correspomding to then in the transverse sections may limit the resistance

of such an oval deck structure. However, with the usual over-all dimensions
of oval deck structures, ranging in height to 2 m, the shearing forces and

the corresponding shear stresses must not be a cause for apprehension, pro-
vided that the limitations on the magnitude of the largest membrane stresses
in the longitudinal sections of the deck structure, Indicated above, be sat-
isfied.

5. A complete analytical investigation of the deformations of an oval
deck structure consisting of true circular arcs was made by V. V. Novoshi-
Lo.* Such an investigation is characterized by very cumbersome methods of
calculation whose practical value is decreased further by their lack of a
check on the stability of such deck structures. For the case of an oval
deck structure of true elliptical shape, V. V. Novozhilov developed the
simple approximation formulas cited below, which determine the membrane
stresses in the sections of the deck structure.

The greatest normal stress in the longitudinal section of the deck
structure:

"bt

The greatest normal stress in the transverse sections of the deck
structure:

![ A +_ 2] (612 t 1 8 2

The greatest tangential stress in the walls of the deck structure:

where a, b are the half-length and half-width of the deck structure; h is

the height of the deck structure; t is the wall thickness; e2 - 1 - b/a 2 .

Example:

To determine the limit strength (resistance) of an oval deck struc-
ture of elliptical section, having the following dimensions:

"*Novothilov, V. V. and Slepov, B. I.: "Calculation of the Stresses in the

Structures of Submarine ulls with Consideration for the Effect of Trans-

verse Bulkheads", Oborongiz, 19145.
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length: 2a - 350 [cm]
breadth: 2b - 200 [cm]
height: h = 250 [cm]
thickness of walls: t - 4 [cm]
yield point of deck
structure material: *T - 3000 [atm]

The largest radius of curvature (at the extremities of the minor
axis) by Equation (3] is:

R-'- Ile - 306 Can]

6 100

The structural stability of the deck structure must be determined
by the expressions in Section 6, taking the following values in them:

r - R - 306 [m]

I - A - 250 [cm]

9 - 4 [cm]

y - u/i - 306/250 - 1.22

a _ tr 4/860 - 18.1 X 10 - 3

Since the values obtained for y and 6 are found to exceed the
limits given in Table .8 and curves of Figure 9, the theoretical critical
pressure *p must be computed directly by Equation [17] of Section 6, assum-
ing an inteer n - 9 from Table 7 with 7/6 - 1.22/13.1 x I0-3 - 93.

If we substitute into Equation (17] n a 9, 6 a 13.1x I0" , a -
- y- 3.83 and take X - 0, it is found that q, - 60 [atm].

The correction factor q, according to Equation [24] of Section 7

is:

The theoretical critical stress by Equation [18] of Section 6 is:

V, -1.1 m1ex6x' O 5 C4

The correction factor n,2 according to Table 10 for steel having a
yield point of 3000 atm Is:

'72 "0.61
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The actual critical pressure according to Equation [19] of Sec-
tion 6 is:

f1 - '10 2 f -061 xl x60-86.6[at[]

The stress corresponding to this pressure is:

eip -W q2 e - 0.6 1 x 5050 - 3080 [an]

Since the stress corresponding to the critical pressure exceeds
the standards specified for admissible stress (0.8 *I" 0.8 x 300 - 2J400
atz), the liin1 strength of the deck structure being Investigated must be
taken as equal, not to 36.6 Cata], but as

The mximum shear stress in the sections of the deck structure
according to Equation [7] of this paragraph (Section 29, Paragraph 5) is:

4 1 Ib 4 4 4 100 175)
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Figure 65

Figure 6
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CHAFTER VIII

ANALYSIS OF THE DRYDOCKING OF SUBMARINES

Owing to the comparatively great general and local strength of
submarine hulls, no difficulties are encountered in drydocking them such
as are encountered in the case of surface vessels where special investiga-
tions and special reinforcements are often necessary. However, this does
not eliminate the necessity for carrying out calculations for drydocking
of all new types of submarines, with the objective of establishing thus the
simplest and most expedient system of drydocking them, and likewise for
emergency drydocking where an unusual distribution of keel blocks and crib-
work* beneath submarine hulls may prove necessary.

Below is set forth the general order for carrying out the analysis
of the general and local strength of a submarine hull when drydocking it.

30. CCSTRICTION OF THE DIAGRAM OF BENDING MOMENTS.

The hull of a submarine, lodged in the drydock, represents a beam
of variable section, equilibrating upon itself the distributed forces of the
weight and the concentrated reactions of the keel blocks and crib-work.

For determination of the bending moment in any section of the hull,
i.e. of the moment of all the forces on one side of the section under in-
vestigation, it is required to know the magnitude and distribution of the
above indicated forces of the weight and of the reactions of crib-work and
keel blocks. The magnitudes and distribution of forces of weight of the

submarine will be considered as known and as given in the form of a weight
curve, whose ordinates at a certain scale, represent the weight of the sub-
marine, acting per unit length ft/m]. With the weight curve available, it
is easy to calculate and plot the curve of the moments of the weight forces
along one side of the section (Figure 68); the computations associated with

this operation are tabulated in the usual manner, as shown In Table 18.

Using the data in the last line of Table 18, the curve for the
moments of weight (I) must be constructed, whose ordinates, measured ac-
cording to a certain scale, will give the value of the moment of the weight

forces of that portion of the submarine located toward the left (i.e. to-
ward the stern) of the section being examined (Figure 68).

For plotting the moment curve of the forces of reaction of the
drydock, it is required first of all to find the magnitude of these reac-
tions at a given distribution of keel block and crib-work along the length
of the submarine and for a given design of these objects. The moment curve

*Editor's Note: The Russian here uses the word "cage," but must mean sup-
porting crib-work designed to shore up the hull in drydock.
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of the drydock reactions will be given as a broken line whose individual

linear parts are segments of straight lines representing the value of the

moment for each keel block, group of keel blocks or crib-work, separately.

For the construction of this broken line, it is necessary to lay out con-

secutively, on a perpendicular passing through the tip of the bow of the sub-
marine, the values for the moments of the reaction forces (mi) relative to

the tip of the bow; through the points obtained, straight lines are then

drawn as shown in Figure 68. The values of the indicated moments mil,*

necessary for construction of the moment curve of the drydock reaction forc-

es, are found in the last column of Table 19 and serve for computation for

the reaction of keel block and crib-work.

Having the curve for the weight moments for the submarine, I, and

the curve of the drydock reaction moments, II, we can then construct the

curve for the bending moments with respect to ordinates equal to the differ-
ences of the ordinates of curves I and II.

31. DETERMINATION OF DRYDOCK REACTIONS.

In view of the comparatively great rigidity of submarine hulls,

it is possible in the determination of keel block and crib-work reactions

to consider, with sufficient practical accuracy, the hull as absolutely

rigid. Using such an assumption, determination of the reactions of the dry-

dock is greatly simplified and may be carried out according to the follow-

ing computational scheme.

1. Notation (Figure 68):

L = the length of the submarine;

xi a distance of crib-work, keel block or group of
keel blocks from the bow perpendicular;

11 12 - vertical deflection of bow and stern as a
result of compression of crib-work and keel

12_11 blocks;
a - = angle of inclination of the submarine result-

L ing from compression of crib-work and keel

blocks;
YIj -12- zi = vertical deflection of a section at a distance

xi from the bow, resulting from compression

of crib-work and keel blocks.

S- = area of a horizontal section of a keel block,

group of keel blocks or of crib-work;

ki - coefficient of rigidity of a keel block or of

crib-work;

*Editor's Note: Possibly in error; m, not shown in Figure 68, but ml, we

and m3 are.
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Pi = kiYi - specific pressure applying on a keel block or

on crib-work;
Pi W Sipi = reaction of a keel block, group of keel blocks

or of crib-work;
D a weight of the submarine;
a - distance of the center of gravity from the

bow perpendicular.

2. Determination of the coefficient of rigidlty k1. The coefficient
of rigidity k, of a keel block or cage is measured in uflits of the specific
pressure and represents that value of the specific pressure at which the

setting (compression) of a keel block equals the assumed unit of length
(for example, the specific pressure is measured in kg/cm2 whereas the com-

pression is measured in cm).
The coefficient of rigidity is determined in dependence of the de-

sign and construction of the keel block as follows.
Let the keel block be constructed of pine beams of average height

hc and of oak beams of average height he* (Figure 69); let the compression

for pine and oak be represented by curves, where, along the abscissa are

marked off specific pressures p, and along the ordinate the corresponding

relative compressions i.
Let us designate by Ec and Ev the moduli of deformation for pine

and oak, representing the ratio of the specific pressure to the correspond-
ing relative compression (E = p/i). The values of the modulus of deforma-

tion for timber depend, as is evident from the slope of the curve shown in

Figure 69, not only on the type of wood, but also on the value of the spe-

cific pressure. Therefore, in the determination of the coefficient of rig-

idity of keel blocks, we must establish the magnitude of the specific pres-
sure for which it is to be found.**

Either by use of reference data or by use of experimental curves

for wood compression*** are found the values for the moduli of deformation
Ec and Eawhich make it possible to determine the general compression of the

*Editor's Note The Russian word for 'oak" starts with the character & when

written in script letters.

**If, as a result of the calculation, it is found that the specific pressure

obtained differs very appreciably from that assumed, it is necessary then

to repeat the calculation, assuming the value of the specific pressure found
in the first calculation.

***In the absence of experimental data, we must take E= 500 to 700 [atm]

..nd. he - 5000 to 7000 [atm], depending on the degree of saturation with wa-
ter (water soaking) of the keel blocks (higher values for dry wood).
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keel block at a specific pressure p by the expression:

1 -As A. 9 -A 1 . . Ao v Eo EoA9

Consequently, the coefficient of rigidity wll be:

km 9&4 + Ei

Using Equation [1] and knowing the compression curves for oak and

pine, it is possible, for a given keel block design, to plot the curve for

the change of its coefficient of rigidity as a function of the value of the

specific pressure.

3. Computation of the drydock reactions. The reaction of a keel

block (or of crib-work) Is determined according to the following obvious ex-
pression:

P- SIP$ - Sk - 8, (12 - a ado

where Si a the effective area of a section of the keel block; Pi = speci-

fic pressure for the compression of the keel block; ki - coefficient of ri-

gidity of the keel block at the specific pressure p; Yj a (12 - OxJ)

a compression of the keel block, where x i is its distance from the bow per-

pendicular.

The quantities i2 and a which determine the general settlement

of the hull, can be found from the two equations given below, expressing

the conditions of equilibrium between the forces of the weight of the sub-

mrine and the reactions of the drydock, to wit:

XE Pi - D

Z - D x a

Substituting in these equations the expression for Pi and solving
them with respect to 12 and a we shall get:

12 fC-Ba D (2]
AC-B

2

a- B-A. 0 [jJ

AC - B2

where

A XU1k,; B mE 5jkj ,; C -X&
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Computation of the reaction of the drydock according to the ex-
pressions cited is conveniently tabulated; see Table 19.

In column I are enterid the numbers of the crib-work., keel blocks
or groups of keel blocks on which the submarine Is shored up in drydock.

In colum II are entered the distances of the crib-work and keel
blocks from the bow perpendicular zi [ma.

In column III are entered the portions of the areas of the eec-
tions of crib-work and keel blocks subjected to pressure Si [n].

In column IV are entered the coefficients of rigidity of crib-work
and keel blocks, determined by Equation [11; ki [kg/cam].e

In column V are entered the products of columns III and IV (Ill-
IV), i.e. the products of Si and ki.

To get the result in [t/cma, these products are mltiplied by 10
(the load on a keel block in [t] corresponds to the compression of the keel
block on 1 cm).

In column VI are entered the products of columns II and V, i.e.
the products lOSikiXi.

In column VII are entered the products of columns II and VI, i.e.
the products 10Sikixi.

Adding the values in columns V, VI and VII we get the quantities
A, B and C in Equations (21 and [5] which serve for comutation of the va-
lues of 12 and a. Having determined by these formulas i2 and a, we fill
in the following columns of the table, serving for determination of the re-
actions of the &drydock.**

In column VIII are entered the products of a times the values of
column II ( a .II), getting the result in cm.

In column IX are entered the differences of the quantity 12 and
the values of column VIII (1 2 - VIII).

The values in column IX give the compression of the keel blocks

Yi in cm; the last figure of this column gives the quantity 12.
In column X are entered the products of the values in coluns IV

and IX (IV.IX), i.e. the values of the specific pressure on the keel blocks,

pi a kiyi (kg/cm2 ].
In column XI are entered the products of column III and X (T11.X),

i.e. the values of the reactions of the keel block Pi M Sip, It].

*The coefficients of rigidity ki must be determined for the first approx-
imation by proceeding from the value of the specific pressure, obtained with
the assumption of a uniform distribution of pressure along the entire area
of keel blocks and crib-work, i.e. setting it equal to p - D/10XS [kg/cm 2],

where D is the weight of the submarine in tons and X S, is the sum of the
numbers appearing in column III of the table.

**The quantity 12 will be obtained in cm. The quantity a will be found at
a value 100 tis greater than its true value; by a further ultiplication
of a by x (in meters), we get the result in cm (column VIII).
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In column XII are entered the products of values in columns II

and II (IIJ.I), i.e. the values of the moments of reaction of the keel

blocks with respect to the bow perpendicular M, - PjXj [t-m].

32. CHECKING THE GENERAL LONITUDINAL STRENGEH OF TEE HULL.

For checking the general longitudinal strength of a submnr@no

the max-m bendin stresses of the hull must be determined and compared
with the value of the admissible stresses. In determination of the bend-
ing stresses, in the portion of the lengtho limited by the rigid hull in

computing the moment of resistance of a section, only longitudinal connec-
tions of the pressure* hull need be considered, neglecting the contribution
of the longitudinal connections of the outer hull. In this case, the mo-
ment of resistance of a section of the hull can be computed according to
the following simplified formla:**

W -up?2 S

where r a the radius of the circular hull In the section under investiga-
tion; t a thickness of hull plating in this section.

The greatest stresses in the hull plating will be:

where Mma x is the bending moment whose value is determined from the bend-
ing moment diagram.

The admissible stress must be taken in function of the value of
the yield point of the plate material of the hull and also in function of
the critical stress for stability of the plating. For this purpose, in
establishment of the necessary reserve strength, we must consider the spe-
cial conditions relative to drydocking submarines. In general, i.e. under
normal drydocking conditions, the admissible stress may be taken as equal
to 60% of the yield point of the plate material and as high as 60% of the
critical stress with respect to the stability of the plating; the smaller

value of stresses thus obtained should be taken.

*Editor's Note: The Russians have here again changed their nomenclature.

What was formerly termed In this work the "stable" or
"solid" hull appears now to be termed the "rigid" hull; all
apparentl7 refer to the pressure hull.

**The moment of inertia of a section of a cylindrical shell with radius r

and thickness t is:

-E"
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The critical streaps wth respect to stability of the hull plating
can be found by the following approximation formula:

13( -, )

33. CHECKING LOCAL HULL STRENITH.

From the point of view of local hull strength, crib-work and keel

blocks must be placed chiefly beneath the transverse bulkheads of the hull

whose rigidity, relative to the forces of reaction of the drydock, appears

completely ensured and therefore does not require any verification. In

general, however, the local strength of the hull must be checked for (1)

local bending of the hull plating between frames subjected to the applica-

tion of a distributed load produced by reactions of the drydock and (2)

bending of the frames, subjected to the action of concentrated forces, ap-

plied at their lower portions.

Without going into a detailed analysis of these calculations, we

shall cite only those general data which may be used under practical oper-

ating conditions by a marine engineer for deriving the necessary conclusions

relative to this problem.

1. Local bzndIng of the plating. If the effective surfaces of crib-

work and keel blocks in contact with the plating cover the span between

frames, the specific pressure Pi determined in conformity with Section 31

(column X, Table 19), must not exceed a known value capable of causing an
inadaisible bending deflection of the plating. The value of the specific

pressure, which is admissible insofar as the safety of the plating is con-

cerned, must be considered as depending on the limiting depth of submersion

of the submarine for which was calculated the strength of the plating.

In the nature of an ,pproximate calculation, we may specify that
the specific pressure must not surpass by more than 50% the pressure corre-

sponding to the limit depth of submersion if there are no supplementary re-

inforcements in the form of an external keel and other braces or shorings

reinforcing the plating. In conformity with the foregoing in general, the

greatest specific pressures in drydocking submarines should be of an order

of from 10 to 15 atm.

2. Bending of frames. The total pressure due to drydock reactions

upon one span* appears as an external concentrated force which produces a

bending of the circular frame and of the plating adjacent to it. This is

*iitor's Note: The Russian here uses the word for 'space". He may mean

span or course.



counteracted by tangential stresses along the sections of the plating which

limit the individual circular frame,

Thus, the bending of the frame is reduced to the bending of a

ring, having a section consisting of the annular frame and the portion of

the adjacent plating of a width equal to one span.
The largest bending moment in the lower section of the frame can

be computed according to the formula:

M .- & [6]

where R is the total pressure of the drydock reactions applying on one span;

r is the radius of the circle of the frame.

The greatest stress in a frame can be found by the following for-

mula:

Emz[7]

where W is the moment of resistance of a section of the frame with the por-

tion of the plating adjacent to it.

In checking the strength of the frame, according to Equation [7],
the admissible stress must be taken in general as of the order of 60% of

the yield point of the frame material.
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Figure 69

Table 18

Lin Cm o0 Lin 2 in.. par..........

il Sums of Line 11 from Left..... .. .. .. .. ..

Ordinates of moment curves:* 1/4 V (L :n)'

Ekditor's Note: Not explained in text. The formula may mean: one-fourth of the
values in Line V times the square of the quotient of L/n, where L
is the length of the submarine and n is the value obtained from the
coliums of the table.
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1 Lab Mgt (Code 320)
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1 Prelim Des Sec (Code 421)
1 Ship Protec (Code 423)
1 Hull Des (Code 44?)
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6 OP 922
2 OP 923 M4

20 CDR, DOC

2 NAVSHIPYD MARE

2 NAVSHIPYD NORVA
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2 CDR, USNOTS, China Lake
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